IOWA State University

Digital Repository

Technical analysis and the stock market

Linda Jean Main
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation

Main, Linda Jean, "Technical analysis and the stock market" (1993). Retrospective Theses and Dissertations. 17655.
https://lib.dr.iastate.edu/rtd/17655

Technical analysis and the stock market
ISM
by
1993
1727 Linda Jean Main
C./ A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE
Department: Business Administration
Major: Business Administrative Sciences

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa
1993

TABLE OF CONTENTS

Page
INTRODUCTION 1
CHAPTER I: EFFICIENT MARKET HYPOTHESIS 4
Weak, Semi-Strong, Strong Forms 5
Weak Form 5
Semi-Strong 7
Strong 10
Expected Return or Fair Game Models 10
Random Walk 11
Conclusion of EMH 19
CHAPTER II: TECHNICAL ANALYSIS 22
Indicators 24
Dow Theory 26
Filter Rules 30
CRISMA 34
Elliott Wave 36
Moving Averages 37
Moving Average Convergence/Divergence (MACD) 39
Relative Strength Index 43
Relative Strength Indicator 47
Momentum 48
Stochastics 48
iii
Directional Movement 51
Price and Volume 53
CHAPTER III: TESTING OF THREE INDICATORS 55
Study Design 55
Moving Average 56
MACD 57
Wilder's Relative Strength 57
Test Data 61
CHAPTER IV: CONCLUSION 66
REFERENCES 71
ADDITIONAL READINGS 75
APPENDIX A. DATA ON INDIVIDUAL STOCKS 76
APPENDIX B. RESULTS BY INDICATOR 97

INTRODUCTION

Over the years there has been a considerable amount of controversy on the use of technical analysis as a method of timing the purchase and sale of investments. Academicians have dismissed the various chartist theories, Eugene F. Fama in "The Behavior of Stock-Market Prices" said that "chart reading, though perhaps an interesting pastime, is of no real value to the stock market investor" (34). However, the chartists have not been deterred from trying to time the market in their pursuit of increased gains.

As early as 1900, there was interest in market forecasting, however, it was limited to a small number of people, mostly in the east, who used tape-reading and figure charts. The market during this time period was low volume and often manipulated by the owners of the few listed companies. Thus, tape watchers could observe the buys and sells of these owners and distinguish patterns that gave insight into what to expect. Figure charting was also popular as a method to estimate future prices. These charts depicted the intra-day price moves and were used to study price changes at a trend reversal.

Around 1920, production statistics became increasingly important to market forecasting. Colonel Ayres' "Blast Furnace Index" was one well-known business indicator. The
fundamentals of this index were "when the average rate of blast furnaces in operation crossed 60% on the way up, the market was high enough to be sold, and when it crossed 60% on the way down, the price level was low enough to be bought" (Drew 11). The danger in any forecasting method is that what is valid in one time period may not be valid in another, a case in point being the Blast Furnace Index. It is possible to take almost any series of changing figures and by suiting various statistical adjustments to the known facts, arrive at something approximating what would have been a "forecast" of the stock market.

The various technical indicators rely on the basic assumption that inherent in past price information and trends lies the future. Technicians believe that the "stock market is oligopolistic in nature, and there is thus an unequal distribution of critical information throughout the market place" that produces patterns and trends in prices that indicate the future (Levy 69). Thus, by careful analysis, the chartist can use the past data and extrapolate the patterns to increase expected gains. The stumbling block, however, seems to be that, as always, there are exceptions to the rule. While history tends to repeat itself, it is not one hundred percent reliable, and the patterns are not consistently dependable.

The antithesis of technical analysis is the efficient market hypothesis which is grounded in the Random Walk Theory. This random walk says that past price data is of no value in trying to predict the future course of a stock's price. "In statistical terms the theory says that successive price changes are independent, identically distributed random variables" (Fama, Behavior 34). In other words, a market that is functioning properly will have capital assets that are priced accurately based on all relevant and available information (Fama, Efficient 418).

This paper will review literature on both the efficient market hypothesis and technical analysis and then attempt to empirically test the opposing views by analyzing ten stocks over a four and one-half year period comparing their returns based on a buy-and-hold strategy versus three of the market timing strategies.

CHAPTER I

EFFICIENT MARKET HYPOTHESIS

The Efficient Market Hypothesis (EMH) has been an intensely researched investment topic. An efficient market is one where prices fully reflect all information, an ideal setting for both firms and investors where production, investment, and ownership decisions can be made with a high degree of certainty. While not absolutely necessary, the following conditions are assumptions that Eugene Fama believes assure market efficiency: no transaction costs, all information is costless and available to all market participants, and all participants agree on the implications of information for the current price and for distributions of future prices (Efficient 387). Unfortunately, reality does not provide such a frictionless market; however, as long as investors assimilate the available information, prices will fully reflect that knowledge. Some potential sources of market inefficiency occur when information is not freely available or if some investors consistently display superior interpretive skills (Fama, Efficient 388).

The EMH's general form is that the "size and direction of a stock price change at time $t+1$ is random with respect to information set S at $t "$ (Sorensen 29). (If S is historical stock prices, then it is the weak form of the EMH. If all publicly available information is S, then we have the semi-
strong form, and if S is equal to all information then we are dealing with the strong form of the EMH.) The random change occurs as a result of new information that is immediately reflected in the stock price. In other words, price changes are the result of perceived earnings changes or changes in the expected return of alternate investments because of the new information.

Weak, Semi-Strong, Strong Forms

Since it is unrealistic to believe that frictionless markets exist, the evidence on EMH has been categorized into three distinct forms, weak, semi-strong, and strong, allowing definite break-points for analysis.

Weak Form The weak form of the EMH defines the relevant information set as historical prices. There have been a considerable number of tests on the weak form with most results supporting the notion; thus within academic circles, weak form is a decided issue. Many researchers liken weak form EMH testing with technical analysis, they believe that technical analysis is contrary to basic economic logic and that this fact is demonstrated in the weak form testing that has consistently proven that price changes are independent over time. While there is some evidence for dependence in price changes, it does not seem to be sufficient to rule that the market is inefficient, especially if the price change covers a period of at least one day or longer. The dependence
is apparent in the filter tests of Sidney S. Alexander considered later in this paper. However, as will be explained, trading profits are eaten up by the numerous transaction fees that are an integral part of any filter method (Fama, Efficient 414).

Joy and Jones (51) criticize the dismissal of technical analysis based on the weak form testing. They assert:

1. There is not a one-to-one mapping between weak form analysis and technical analysis.
2. Many weak form tests are not direct tests of specific forms of technical analysis.

Joy and Jones contend that while tests of weak form support the EMH, these tests are not conclusive as they relate to technical analysis since technical analysis is broader than just past price changes. Past prices are just one type of data and little study has been done on the volume data which is jointly analyzed with price information as a form of market timing. Thus, it is incorrect to conclude that technical analysis is invalid based on the weak form tests.

Sweeney (New 299) questions the weak form, his studies have found that, at least at floor traders level of transaction costs, the market is weak-form inefficient. He offers three explanations for this phenomenon: 1) the value of a seat on the exchange is equal to the present value of the profits available; 2) opportunity costs of implementing the rules reduce the profits available; 3) Traders, other than
floor traders, move the market against themselves while trying to consummate the trade.

Semi-Strong The semi-strong form of the EMH asserts that publicly available information is reflected in price changes. Tests of this form of market efficiency also support the EMH. However, the tests generally only consider one type of information at a time, for example, annual earnings or stock splits; thus, one must accumulate the results of each test to check the validity of the semi-strong form model.

Fama reports on the results of tests of several different types of information (annual earnings, new issues, stock splits) and concludes that the results indicate market efficiency (Efficient 415). The Fama, Fisher, Jensen, and Roll test on stock splits found that it may not be the splits themselves that motivate price changes but rather the accompanying information. They studied returns around the date of the splits to see what generated the price changes and found that the price appears to adjust when the split is declared, probably in anticipation of an increase in future dividends (Fama, Efficient 407). In conclusion, they found that the stock market is efficient as it adjusts to stock split information.

Other tests that support the semi-strong efficient markets hypothesis, are Ball and Brown who studied annual earnings announcements. They concluded that eighty-five to
ninety percent of the information content in earnings reports is incorporated into prices by the month of the announcement. Discount rate changes by the Federal Reserve Banks were studied by Waud with findings that the market appears to anticipate the news since prices tend to adjust in the days preceding the announcement. By the first trading day after an announcement the price adjustment is inconsequential (Fama, Efficient 408).

Scholes also tested the semi-strong form by looking at large secondary offerings and concluded that the prices appear to adjust because of the negative information implicit in the selling of a large block of stock. Prices adjust an even greater amount if the seller is the company itself, even though the seller's identity is not public information prior to the time that the prices adjust (Fama, Efficient 409), a fact that is indicative of insider information or information leaks.

Robert A. Schwartz, (Fama, Efficient 422) disagrees somewhat with Fama's conclusion that the market is efficient in the semi-strong form. He states that while "anticipatory price adjustments do indicate that, on average, new information is quickly gleaned and responded to by the investment community" there does appear to be some monopoly position for the trader because the early receipt of information gives him control. While the monopoly position is
only transitory, persistently early information seems to suggest that the trader has a market advantage which is inconsistent with the semi-strong form. The length of time it requires for the market to adjust may also suggest inefficiency. Schwartz continues that even Fama finds some dependence in prices (although Fama says that it is not sufficient to reject the Efficient Market Hypothesis) and until there are no further tests to be conducted, the question of an efficient market is far from settled (Fama Efficient 423) .

Schwartz believes that if a specific stock's price is volatile and appears to behave in a consistent fashion over a period of time, a trader may be able to gain excess profits by utilizing the information contained in the consistency. He might be able to do so "not on the basis of expectations of a specific directional price change, but rather on the expectation that one stock's price is simply more apt to change than another's" (Fama, Efficient 423).
"In all tests cited, stock prices appear to react prior to the event in issue. Therefore, it is observed that prices "incorporate, fully and early, new information of the type considered in these studies" (Fama, Efficient 421), leading to the conclusion that the market is efficient in the semistrong form.

Strong Form Finally, strong form market efficiency denies the possibility that certain groups or investors have access to information that is neither publicly available nor reflected in prices (Fama, Efficient 414). Tests of the strong form try to determine if all available information is fully reflected in prices so that no one can have higher expected profits because of monopolistic information. Fama does not believe that the strong-form accurately describes the market although it could be used as a "benchmark against which the importance of deviations from market efficiency can be judged" (Fama, Efficient 414-415). Two such deviations are:

1) Niederhoffer and Osborne's reports that specialists on exchanges have monopolistic information concerning limit orders and use this information to create trading profits, and 2) Scholes reports that corporate insiders have capitalized on information to make excess profits. Fama asserts that:
corporate insiders and specialists are the only two groups whose monopolistic access to information has been documented. There is no evidence that deviations from the strong form of the efficient markets permeate down any further through the investment community. For the purposes of most investors the efficient markets model seems a good first (and second) approximation to reality (Efficient 415-416).

Expected Return or Fair Game Models

Most empirical testing of the Efficient Market Hypothesis has been carried out within the context of the Expected Return or Fair Game models. These models are based on the two
following assumptions, 1) market equilibrium can be stated in terms of expected returns and 2) information is fully utilized in forming equilibrium expected returns and thus current prices. There are concerns regarding these assumptions since one must define "true expected value" and "fully reflected," concepts which can be measured by many different criteria. One Expected Return or Fair Game model that has been rigorously studied is the Random Walk.

Random Walk Around 1890, Louis Bachelier first stated and tested the Random Walk model in his provocative paper "Theory of Speculation." His "'fundamental principle' for the behavior of prices was that speculation should be a 'fair game'; in particular, the expected profits to the speculator should be zero" (Fama, Efficient 389). Under the fair game principle, trading systems that produce greater than normal profits are impossible. A random walk:
arises within the context of such a model when the environment is (fortuitously) such that the evolution of investor tastes and the process of generating new information combine to produce equilibria in which return distributions repeat themselves through time. (Fama, Efficient 387)

Early evidence accumulated that pointed to a random walk where prices reflected all information and that successive price changes were identically distributed. This means that the market is efficiently competitive with sufficient sophisticated traders to cause instantaneous price adjustments
that reflect intrinsic security values. Thus, stock price variations are aimless and future prices are unpredictable. The random walk implication that stock prices do not contain predictive information means that effective analysts are unable to earn extraordinary profits and that technical analysis based on past prices can not succeed in determining future price trends. This hypothesis is not viewed favorably by investment professionals but it is strongly adhered to by academicians.

In 1953, Maurice G. Kendall studied prices and concluded that the price "series looks like a wandering one, almost as if once a week the Demon of Chance drew a random number...and added it to the current price to determine the next week's price" (Fama, Efficient 390). Other tests also concluded that price changes appeared to follow a random walk. Paul Cootner reasoned that investors would force prices up if they bought when they believed the prices were too low.

Except for appreciation due to earnings retention, the conditional expectation of tomorrow's price, given today's price, is today's price...since there is no reason to expect that information to be nonrandom in appearance, the period-to-period price changes of a stock should be random movements. (Fama, Efficient 390)

In the broad form, the Random Walk Theory states that "fundamental analysis of publicly available information cannot produce investment recommendations that will enable an investor consistently to outperform a buy-and-hold strategy in
managing a portfolio" (Malkiel 168). Because intelligent investors discount new information so quickly it is extremely difficult to realize excess profits by utilizing fundamental analysis. The narrow form goes even further by asserting that technical analysis is also useless to investors since all knowledge is immediately reflected in prices.

A random walk does not suggest that prices are unaffected by changes in the fundamentals of a company. Just the opposite is true, a random walk signifies that new information is so quickly disseminated that it is virtually impossible for anyone to consistently benefit. In fact, the growing sophistication of investors almost insures that prices will reflect all new information, therefore, random forecasts of the market will provide as accurate an estimate as those reached through either fundamental or technical analysis.

According to Fama (Behavior 35), the Theory of Random Walks is based on two hypotheses. The first is that price changes are independent and the second is that these changes in price follow some probability distribution. Statistically, independence of prices means that "knowledge of the sequence of price changes leading up to time period 't' is of no help in assessing the probability distribution for the price change during time period 't2'" (Behavior 35). Fama continues, however, that the random walk is not a totally accurate
picture of reality since nothing is ever perfect. Thus some dependence will be found, although it should be at a minimum.

The minimum acceptable level of dependence, according to Fama (Behavior 35), depends on the point of view being considered. For the statistician conducting tests on successive price changes, if the dependence can not account for the property being tested, then the assumption of independence can be justified. On the other hand, a technician will use very practical rules in determining dependence, such as can the knowledge of past price changes be used to increase return. The investor would be willing to accept the Random Walk Theory if the degree of dependence could not be used to produce greater expected profits than a buy-and-hold policy (Fama, Filter 226). Thus, what is "important from a trader's point of view need not be important from a statistical point of view, and conversely dependence which is important for statistical purposes need not be important for investment purposes" (Fama, Behavior 35).

There are many views to explain price independence that are consistent with the Random Market Hypothesis. One of the least appealing views regarding independence in price changes is that stock prices are the result of randomly generated noise. Noise meaning the psychological and other factors that cause investors to purchase stocks in different companies. In
other words, prices are unrelated to economic and political events.

Another view of price independence is that many investors look for the intrinsic value of a stock in determining its fair price. The Random Walk Theory can be consistent with this idea only if it is understood that while prices usually reflect the intrinsic value of the security which depends on the earning prospects of the company which in turn are affected by economic and political factors, prices do not have to actually reflect intrinsic value and probably will not since we live in an uncertain world where individual investors analyze and reach conclusions that are inconsistent. Another reason that actual values are in a state of constant flux is that new information from research, changes in market forces, governmental factors, etc., is constantly being disseminated (Fama, Behavior 36).

Fama cites Bachelier as proposing another, simpler argument for the independence assumption.

If successive bits of new information arise independently across time, and if noise or uncertainty concerning intrinsic values does not tend to follow any consistent pattern, then successive price changes in common stock will be independent. (Fama, Behavior 37).

In other words, if new information is independent and the noise concerning intrinsic value is independent then prices are independent. Fama continues, however, that this is too
simplistic a view because there are opinion leaders that influence the market and there is a tendency for good news to follow good news, or bad new to follow bad news, all instances causing price dependence (Fama, Behavior 1965).

Even if there is dependence in the information or noise causing price dependence, "sophisticated traders in general feel that actual prices usually tend to move toward intrinsic values" or equilibrium (Fama, Behavior 38) thus the market can over-ride the dependencies and produce independent prices. For this to occur, there must be many sophisticated traders that have superior analytical skills who can predict the effect of new information on price behavior. Therefore, when noise causes prices to be above or below their intrinsic value the sophisticated traders evaluate the intrinsic value and neutralize the noise by trading in the opposite direction and thereby causing the prices to be independent. Thus, the sophisticated traders erase the dependencies and bring the price back to intrinsic value.

Over a period of time new information may arrive that causes prices to over-adjust or under-adjust and creates a lag before the new intrinsic value is evident. If the new information is dependent, the prices tend to be dependent, but again, sophisticated traders that are able to interpret the information effect on prices will negate the dependency. Since intrinsic values are not exactly known, the intrinsic
value and actual security price may be different because the actual value is affected by the noise (disagreement among investors about the intrinsic value). Where there is a lag in reaching intrinsic value chartists may be able to accumulate excess returns; however, this lag is an independent variable (Fama, Behavior 39).

Fama continues that while chartist's may aid in creating independence of prices, once the independence is established then charting becomes ineffective. On the other hand, intrinsic-value analysts who can consistently "predict the appearance of new information and evaluate its effect on intrinsic values will usually make more profits than can people who do not have this talent" (Fama, Behavior 39). Again, however, with enough analysts capable of consistently estimating the impact of new information, the ability becomes useless since prices will always reflect true intrinsic values and because there are no lags, there will be no profits to make, rather prices will instantaneously reflect the new information.

The second hypothesis to the Random Walk Model is less important than the independence hypothesis. This second hypothesis is that price changes conform to some probability distribution. The shape of the distribution does not have to be specified so any distribution is accurate if it describes
the price changing process. To an investor, however, the shape can be helpful in determining the riskiness of a stock. Different models to explain the probability distributions have been based on the assumption that the price changes have normal or Gaussian distributions. Empirical tests have shown, however, that "most of the distributions of prices changes are leptokurtic; that is, there are too many values near the mean and too many out in the extreme tails" (Fama, Behavior 42). The leptokurtosis does not support the normality hypothesis. Generally, this problem has been explained away by assuming that extreme values are a result of extenuating actions that can be ignored. However, to the investor, this equates to an unassessed risk that needs to be considered before committing funds.

With the advent of the computer, more rigorous testing was possible. Two statistical methods of testing the Random Walk Theory are serial correlation studies which test the relationship of successive security prices and runs analyses that compares the length of actual price runs with a mathematically determined expected length of runs.

Robert A. Levy (70) suggests that tests of the Random Walk Theory using serial correlation or runs analyses are insufficient because of serious methodological deficiencies such as:

1. Inability to distinguish nonlinear patterns
2. Difficulty in interpretation
3. Rigidity with regard to the size of the price change
4. Difficulty in measuring risk
5. Nonfiltering of co-movement effects

Joy and Jones also criticize correlation studies as being indirect tests that "do not lend themselves directly to economic inference regarding EMH validity" (51).

Levy (70) proposes using simulation to avoid the statistical tests' weaknesses. However, because of the large amount of data that must be manipulated, a computer is necessary. Simulations put a trading strategy into practice, determine the results of utilizing the strategy, and compare the results with a strategy of random investment selection. Simulation avoids the pitfalls of serial correlation and runs analysis since it can detect non-linear patterns, test for relative strength which filters out co-movements, and it can assimilate the effects of brokerage commissions. The results of simulations are also expressed in dollars and cents and it provides for a measure of risk.

Conclusion of EMH

The numerous tests of market efficiency have concluded that empirical studies produce support for the Random Walk Model. While there is some indication that large price changes may be followed by large prices changes and there is a probability that a positive (negative) change today will result in a positive (negative) change tomorrow, there is no
evidence of any dependence that would aid investors, especially as one tries to predict further into the future (Fama and Blume 238). Fama even suggests that this only means that new information cannot be evaluated immediately thus the price may over- or under-adjust initially but in the following days the price changes are random in sign and are, therefore, impartial price adjustments created by the effects of the information. He further notes that while this represents a denial of the random walk it does not negate the Market Efficiency Hypothesis (Fama, Efficient 396). Thus, past price changes can not be used to provide greater expected profits.

Malkiel (171) raises some concerns regarding certain random walk assumptions. He believes that the market has proven too often that stocks do not always sell at anyone's evaluation of price especially during periods of speculation where prices ride wide swings and no one is able to pin down the true intrinsic value. Also of concern is the presumption that news travels instantaneously to everyone and that no investor wields monopolistic power in the market. Malkiel asserts that there are too many powerful brokerage firms that are considered market leaders who can, at least for a time, provide self-fulfilling prophecies.

Robert Ferguson goes beyond questioning the possibility of an efficient market, he ridicules the concept. Ferguson states "the fact is that market efficiency is implausible on
the basis of common sense experience" (31) and continues with examples of investors who displayed advantages in information, analysis, judgment, and idiosyncratic behavior and were able to benefit from their abilities at the expense of other less capable traders.

If the market truly follows a random path, then the average investor's decisions are simplified. The investor can add a randomly selected security from a specific risk class and, on the average, any security so chosen will have about the same effect on the expected return and riskiness of his portfolio as one chosen using any other method (Fama, Behavior 40) .

In summary, the Random Walk Hypothesis can not be proven by statistics or simulation. The only assertion that can be made is that the technical strategies tested do not yield greater profits than those provided by a random selection (Levy 70).

CHAPTER II

TECHNICAL ANALYSIS

Technical analysis is a category of trading techniques that attempts to forecast prices through the use of past price information and a few other statistics about security trading such as volume. Technicians believe they can detect market supply and demand in the charts. Technical analysis came into use long before financial information was publicly available that allowed fundamental analysis, with the Dow Theory probably being the oldest technique dating back to the late 1800s. Many of the techniques in use today have been around for many years. These techniques look for relationships in stock prices.

The fundamental premise of technical analysis is to identify and predict the movements of market trends, to evaluate market relative strength or weakness, and to profit from the application of that analysis. A pure technical approach disdains the use of fundamental data that contains facts "relating to the market, but external to it," because it is believed that by the time the fundamental data is public, it is already reflected in the stock price (Drew 21).

By applying superior analytical skills to public facts, insights are gained that provide opportunities for profit as long as the investor's analysis is correct on two counts: "first, the estimate of the worth of the information must be
reasonably accurate in terms of its impact on the price of the stock, and second, the investor must make a realistic assessment of the likelihood that the market already has received the information or insight in question" (Treynor and Ferguson 757).

A plot of past unique returns will aid in determining if the market has already received the information. A recent spike in the unique returns will denote that the market has already assimilated the information and the investor will know that this information is valueless. If the unique returns do not display a recent spike, the investor can assume the information still has value and that it is possible to gain from it. Treynor and Ferguson clearly state that "it is the nonprice information that creates the opportunity. The past prices serve only to permit its efficient exploitation" (773).

The attitude of academics towards technical analysis,
until recently, is well described by Malkiel:
Obviously, I am biased against the chartist. This is not only a personal predilection, but a professional one as well. Technical analysis is anathema to the academic world. We love to pick on it. Our bullying tactics are prompted by two considerations: (1) the method is patently false; and (2) it's easy to pick on. And while it may seem a bit unfair to pick on such a sorry target, just remember; it is your money we are trying to save (116).

Others in the academic world also disagree with technical analysis based on comparisons of the buy-and-hold strategy and the whip-saw argument. Glickstein and Wubbels (29) dismiss the arguments, however, stating that a buy-and-hold strategy from January 2, 1971, to December 31, 1980, would have had average capital appreciation of 1.6% per annum compared to the average capital appreciation of 14.6% per annum if trading had occurred based on the Dow Theory. For the same ten-year period the whip-saw argument, which states that "those who trade based on technical indicators are liable to get in too late on the upside and to get out too late on the downside," did not hold up either. Only two instances were noted where trading based on the technical indicators would have created a loss. The greatest loss, which was less than three percent, was June 14, 1976, to August 20, 1976. Based on these findings they feel that the whip-saw and buy-and-hold arguments are not material.

Even with all the controversy, technical analysis has been enjoying a renaissance on Wall Street. All major brokerage firms publish technical commentary on the market and individual securities, and many of the newsletters published by various "experts" are based on technical analysis.

Indicators

Before the computer age, technical analysis was confined to drawing charts of prices and analyzing the patterns and
formations on those charts. With the appearance of computers, especially personal computers, technicians began inventing new methods that attempted to measure things that had previously been nonmeasurable, such as how overbought a market was, the strength of its current trend, or the prospect of a change in trend. These studies have evolved into indicators that serve as important technical trading tools.

Alexander Elder (Heeding 36) believes that even "bad" trading signals relay vital information. When a normally reliable indicator does not work, he calls it "The Hound of the Baskervilles" signal that tells you a "major shift is taking place under the surface of the market and it is better to reverse a trading position."

Generally, indicators only work "for a short period of time and probably only for a certain kind of market" (Crim 73). Thus, technicians should use a variety of methods and never rely solely on one. All indicators are either trendfollowing indicators or oscillators. The first category includes moving averages, filters, and the directional system; oscillators which identify market overbought and oversold areas include rate of change, momentum, moving average convergence-divergence (MACD), Relative Strength Index and stochastic. Some terms used with technical indicators are:

Overbought - the market is overextended to the upside and ready to turn down.

Oversold - the market is overextended to the downside and ready to turn up.

Divergence - higher price tops with lower indicator tops is bearish divergence. Lower price bottoms with higher indicator bottoms is bullish divergence.

Oscillators - the difference between two moving averages that measures and quantifies momentum. They are usually setup as differences or ratios that move above and below a threshold or signal point of zero or one. When the oscillator crosses the signal point, the two moving averages have crossed. Oscillators are also used to give indications of overbought/oversold conditions, initiating trades at certain extreme positive or negative areas (Stein, Traders' 27).

Momentum - the velocity or speed at which a data series is moving.

Dow Theory The oldest method of assessing stock market price trends is the Dow Theory. Considered the foundation of technical analysis, the Theory's principles were first laid out by the founder of the Wall Street Journal, Charles Henry Dow. Dow began by studying the industrial and railroad averages and publishing his observations. He did not intend for his theory to be used to predict market prices, rather he viewed it as an indicator of business conditions (Drew 26). The Industrials were considered a measure of the productive aspect of the market while the Rails were known as measuring distributive activity. Although the Rails are not the motivator of the nation today as they were previously, the Transportation Index is still reflective of market speculation and thus is a useful measure. These two averages are representative of the market as a whole since it has been
established that correlations exist among all the major averages. The Dow Theory has even been blamed for the 1929 stock market crash by investor Gary Bosley. Bosley contends that the publication of the Dow's bear signal weeks before the crash was a contributing factor to the sell-off that occurred (Crim 72).

The Dow Jones Industrial Average is known as the primary index since it generally is the first to signal a trend change. The Dow Jones Transportation Average is the confirming index. The Theory's basic assumption is that the movement of stock price averages represent "everything everybody knows, hopes, believes, and anticipates" (words of Charles Dow as cited in Drew 19) which is saying that the market is a summation of current business economics. The seven principles of the Dow Theory are:

1. The two averages are a summation of all investors' activities. Everything that is known or expected and that could affect supply and demand of securities is reflected in the averages.
2. The market displays three trends. A primary or long-term trend in stock prices which is from under a year to several years in length. A secondary trend that acts in the opposite direction of the primary trend and lasts three weeks to three months, and finally, a minor trend with a length of a few hours to two or three weeks that reflects day-to-day fluctuations that occur. The Dow Theory ignores the minor trend.
3. An upward primary trend has three up moves. The first reflects stock accumulation when savvy investors anticipate an improvement in prices. The second surge reflects buying based on improved company earnings. The third upward trend occurs when all the market news is positive and the general public begins to buy.
4. A downward primary trend has three down moves. The first fall occurs when savvy investors realize that prices are too high and they begin to sell. The next downward move is when there are more sellers than buyers and investors begin to panic as they try to get out of the market. The final drop is a result of distress selling as buyers try to raise cash.
5. Confirmations are exhibited when both averages reflect the same trend around the same time. A bear trend is confirmed when the Dow Jones Industrial Average and the Dow Jones Transportation Average hit a new low from a previous secondary reaction. The reverse signals a bull market (the averages hit a new high in an upward secondary reaction.) Without confirmation, it is less likely for a trend to continue. As a general rule, the sooner the confirmation occurs the stronger the move.
6. Closing prices are used.
7. A reversal of both averages must occur before a trend is broken. To correctly interpret the Dow Theory, one must distinguish between a new primary trend and the secondary movement of an existing trend. The price action defines the trend.
(Colby and Meyers 179)
These principles of the Theory are subject to
erpretation. Martin Pring of "Pring Market Review" feels
that the application of the Theory is an art, "otherwise, a purely mechanical method would have become discounted in the market and personal judgment would be useless" (Crim 72). While the Theory outlines the market trends, it does not provide practical guidelines for forecasting the trend's duration or magnitude. Glickstein and Wubbels tested the Dow Theory by statistically establishing that a relationship exists between the confirmations and trend continuations. They found that there is a "strong, nonrandom connection between confirmations and continuation of trends in the Dow Jones Industrial Average" (31). Their study supports the principle of confirmation. As for nonconfirmations, it is especially interesting to note that during their ten-year study period the "five major bottoms in the Industrials were signalled by non-confirmations in the Transports" (31).

Another analyst notes that from 1920 to 1975 the Dow signals predicted sixty-eight percent of the moves for the Industrial and Transportation averages and sixty-seven percent of the Standard and Poors 500 Index (S\&P). Even if positions had not been closed until confirmation, the Theory would have still predicted thirty-five percent of the Industrial and Transportation moves and twenty-nine percent of the S\&P 500's moves (Crim 72). Pring, also notes that the averages have confirmed twenty-three sell signals since 1897 creating an average gain of thirty-five percent with only two creating
losses. Buy signals have occurred twenty-three times also but their return has only averaged ten and one-half percent with three possible losses (Crim 72).

The Dow Theory has been criticized for giving late signals and thus missing the beginning and ending of major moves. While the Theory cannot provide enough of a lead signal to enable investors to get in or out at the top and bottom of the market, it does "keep the investor on the right side of most extended moves" even though the signal occurs twenty to twenty-five percent after a peak or low (Crim 72). Many technicians feel that the Dow Theory should only be used as a starting point. It will give the overall view of the market but may not be a practical method for trading.

Filter Rules A simple method of market timing is filter rules. Filtering tests the assumption that new information is gradually incorporated into prices. Fama and Blume analyzed Sidney S. Alexander's filter method that used the rule "if the daily closing price of a particular security moves up at least x per cent, buy and hold the security until its price moves down at least x percent from a subsequent high, at which time simultaneously sell and go short" (227228). This filter yielded substantial profits using various sizes of filters over different time periods. Before transaction costs, the filter performed better than a naive buy-and-hold strategy for fifteen of the thirty stocks.

Averaged over all the stocks, the filter produced eleven and one-half percent per year compared to ten point four percent for a buy-and-hold. However, when Fama and Blume considered transaction costs, the average rate of return to the filter became -103.59 percent per year.

Aside from the transaction costs that drastically affect the returns generated by a filter rule, Alexander's methodology was questioned because he assumed that an investor could always buy and sell at the exact high and low and because of the bias resulting from the difficulties inherent in adjusting prices for the effect of dividends. Fama and Blume concluded that while Alexander's filter found some dependence in price changes, it was so small that the Random Walk Model was still sufficient to describe price behavior.

Richard Sweeney (New 285) believes that the filter rule tests completed by Fama and Blume understated the returns relative to a buy-and-hold strategy. Sweeney asserts that averaging the filter results masks the success of the filter method on some stocks. Thus, rather than using all stocks in the database, he selected stocks from Fama and Blume's study that had been winners in one period and examined them using statistical confidence bounds. The composition of his trading list changed substantially each year but using past data to generate a new trading list for the year, statistically significant risk-adjusted profits were made in the following
year for the lower levels of transaction costs. Failure to update the list's composition resulted in lower returns as the years progressed.

Assuming that closing prices were unbiased estimates of purchase and sale prices, Sweeney found that profits could be made if transaction costs were low, such as those available to a floor trader. He also considered only long equity positions, a contrast to Fama and Blume's criteria of employing short positions whenever the investor is not long in it. The avoidance of short positions increased returns since these positions usually performed poorly as well as created extra transaction costs.

Sweeney (New 290) also feels that the transaction costs used in the Fama and Blume study were overstated. Since 1976, the clearing house fee has been three dollars per transaction, considerably less than the one-tenth of one percent on each complete transaction used by Fama and Blume. Therefore, for any transaction greater than six-thousand dollars, the onetwentieth of one percent for a one-way exchange was too large.

It should be remembered that filter results are extremely sensitive to transaction costs and to the assumption that the closing price is an unbiased estimate of the purchase or selling price. Transaction costs are extremely important because the substantial number of buys and sells generated by a filter rule drastically reduce profits. In Sweeney's test,
on the average, each stock was bought or sold every three days, creating transaction costs of 0.1333% per day.

The use of closing prices also caused differences in returns between Sweeney's and Fama and Blume's studies. The actual trigger price may occur earlier in the day; thus, by using closing prices in the studies, the results are somewhat skewed since the actual trade price may be above or below the trigger depending if it is a buy or sell. As noted by most studies, the only way to accurately test the strategies and alleviate the concerns is to put them into practice.

Sweeney concluded that utilizing his methodology, fifteen of the thirty securities analyzed by Fama and Blume offered profits at the one-half of one percent filter rule from 1956 to 1962. His subsequent testing for the 1970 to 1982 period with a statistical confidence bound, indicated significant profits for floor traders. Lower profits were available to money managers, while private transactors were unable to earn a profit.

Sweeney attempted to answer the puzzle as to why substantial and significant risk-adjusted excess returns are possible in the face of the EMH, concluding either that: one, since the composition of the trading list varied year to year, winners are transitory and, therefore, the search must be continuous; or two, because the costs of developing the approach and experimenting to find the patterns in past prices
are extremely high and must be implemented by computer, insufficient numbers of investors are willing or able to utilize the system.

CRISMA Pruitt and White (Pruitt and White, Crisma 55) developed a system of indicators to locate equities. Their multi-component strategy called "CRISMA" involves price, volume, and relative strength indicators on individual security issues. The acronym stands for the elements that are used: cumulative volume, relative strength, and moving average. They assert that the system is being used actively and has outperformed the market even when two percent transaction costs are considered.

CRISMA uses filter graphs to measure upward price momentum. The filters, "based upon a stock's relative strength compared to the $S \& P$ 500, cumulative volume, and 50day and 200-day moving averages of prices, attempt to measure and 'triple confirm' upward momentum" (Pruitt and White, Crisma 55). A fourth "penetration filter" is required before an actual buy recommendation is made.

Three criteria are required to place a stock in a buy position. The first, meaning price is trending up, is "the 50-day price moving average graph must intersect the 200-day price moving average graph from below when the slope of the latter graph is greater than or equal to zero" (Pruitt and White, Crisma 56).
"Second, the relative strength graph, from beginning to ending point over the previous four weeks, must have a slope greater than or equal to zero" (Pruitt and White, Crisma 56). The purpose of this filter is to ensure that the stock's recent price performance has been similar to the market as a whole.
"Finally, the cumulative volume graph from beginning to ending point over the previous four weeks must have a slope greater than zero" (Crisma 56). This filter confirms that trading volume increases are consistent with rising stock prices.

The final "penetration filter" is constructed to help avoid false signals that generate whipsaws. Once the first three criteria have been met, the security is purchased when the "price reaches 110% of the level established by the intersection of the 50- and 200-day moving average graphs" (Pruitt and White, Crisma 56). Sells are signalled either when "prices fall below the 200 -day price moving average graph or rise above 120% of the level established by the intersection of the 50 -day and 200 -day price moving average graphs" (Pruitt and White, Crisma 56).

Pruitt and White contend that this system can be utilized in a minimum of time. The stocks are easily identified by looking at weekly stock graphs to find the three confirmation filters. After the initial identification, one must note the
date of the confirmation, determine the 110% and 120% price levels, and then follow the stock to catch the buy and sell signals.

Elliott Wave The Elliott Wave Principle, created by Ralph Nelson Elliott, has many proponents and a similar number of opponents. His followers, in particular Robert Prechter, avow that this tool is invaluable in market forecasting. The basic theory is that the stock market trend develops in a pattern of eight waves (five waves up and three waves down) of varying lengths, some as short as a single trade and others that last centuries. The three down waves are "corrections" of the previous five up waves. The first eight-wave cycle is followed by a comparable eight-wave cycle which is then followed by a final five-wave up pattern. This major upward movement is succeeded by a major three-wave down movement that corrects the five major upward waves (Frost and Prechter 20).

By classifying and counting the waves, market trends are determined. Bull and bear markets are distinguished because certain wave combinations are not possible during these trends. The establishment of the various wave combinations is often confusing and the rules of the Elliott Wave Theory are complex (Gehm 51). Elliott's theory stresses the Fibonacci number series in which each number is the sum of the previous two numbers ($1,1,2,3,5,8$, etc.). At any one time, the market
may be on a short-term downward wave of only an hour in duration and also on an upward wave that lasts centuries.

Moving Averages One of the simplest trend indicators is a moving average of prices that displays the consensus of the market by eliminating the inconsistent points. This smoothed average, which works best in trending markets, serves as a point of reference for determining the market tendency. With the arrival of computers, simple moving averages have given way to exponential moving averages that smooth out old data and give more weight to the most recent prices during a specified period. Buy and sell signals are generated when the price crosses over one of its moving averages. The general rule is to buy when prices rise up through the moving average line and to sell when prices drop below the line. The critical decision is to determine when the crossover is truly a trend change and not just a minor adjustment. Some technical systems, such as William O'Neill's "CANSLIM", also use volume as a key to trend changes, however, when strictly utilizing moving averages, price is the only issue, volume is not considered.

Some technicians lag the moving average by a few days to make crossovers more discernible or to at least confirm a trend change. The 200 -day simple moving average has been used for years and is easy to calculate: add the closing prices for the past two-hundred trading days and divide by two-
hundred (some use the weekly closing prices for the past forty weeks and then divide by forty) (Colby and Meyers 452).

Technicians use various lengths for the moving averages; Elder (Moving 32) says to use the length of the market cycle to determine the moving average length. For traders, the best moving average is "half the length of the market's dominant cycle." He continues with some guidelines for trading with moving averages:

Buy and hold when prices and the moving average are headed up.

Sell when the moving average stops rising and goes flat.

Go short when prices penetrate below the moving average and the moving average turns down.

Cover shorts at the first sign the moving average is flattening. Tops tend to develop over a longer period of time, giving you time to sell. Bottoms tend to form much faster, and you have to cover your shorts quickly to preserve profits.

Some technicians develop an envelope from the moving average in an attempt to filter out minor irregularities. There are a variety of methods to generate the envelope, one of the simplest is to use the price close, high, and low to create a three-point moving average. Another technique is to create the band by widening the moving average on both sides by a percentage. A price must cross the entire envelope to generate a signal. While this method does screen out minor
aberrations, it is also possible that if the band is too wide true trend moves will be ignored (Stein, Traders 27) Moving Average Convergence/Divergency (MACD) An increasingly favored price-based momentum oscillator developed by George Appel, the MACD is based on exponential moving averages (EMA) that evaluate bullish and bearish trends. MACD is superior to a simple moving average (SMA) because it utilizes three exponential moving averages and it is their crossovers, not price, that generate trading signals. The MACD attempts to anticipate a crossover since it "reacts when the averages begin to converge (or diverge)" (Seykota 36), resulting in a quicker signal than is generated by an SMA.

The MACD line, also called the fast line, is the difference between a twenty-six week EMA and a twelve-week EMA of closing prices. The third EMA is a nine-week EMA of the MACD line and is called the signal or slow line (while weeks are commonly used, the period can also be a day or a month). When the MACD line crosses above the signal line a buy is indicated and when it drops below, it gives a sell signal (Aspray 44).

Actions that are indicated at the crossovers of the MACD and signal line are similar to those at the crossing of two simple moving averages with long positions flagged on upward crossovers and short positions on downward crossovers. The crossover usually confirms a peak or trough with divergences
between the crossover and price being especially strong signals. The most important crossovers, according to Elder (How to 70), are those occurring furthest from the MACD zero line because these result in the investors rushing with the emotion of the trend. When crossovers occur near the zero line, nonproductive moves usually occur since "public emotion is flat, disinterested" (How to 70). Elder also believes that MACD works when markets are moving but produce losses when markets go flat (Moving 36). Stein (Traders' 27) cautions that crossovers in overbought/oversold zones should be utilized in trading markets while valid crossovers can occur in other areas for trending markets.

Use of an MACD histogram can improve the speed and effectiveness of this indicator. Trading signals are generated from direction changes in the histogram, sells are flagged when the "histogram tries to rally and then falls, and you buy the upturns" (Elder, How to 68). Elder continues that while the MACD lines signify direction, the MACD histogram tracks momentum by its height which measures the distance between the MACD line and the signal line. As the histogram ascends, bullish forces are building and the growing size indicates a healthy uptrend (Elder, Using MACD 36). When the histogram deflates the trend is losing steam and a reversal is possible (Elder, How to 70). If the MACD line is above the
signal line, the histogram is directed upward and the obverse is true for a downward directed histogram.
"Another powerful signal is given when MACD lines and prices keep moving in the same direction, but the MACD histogram flattens out and diverges from their patterns" (Elder, How to 70). If the MACD histogram shortens while prices expand, the bullish trend is weakening. Elder explains that buys are signalled when "price makes a second bottom, equal to or deeper than the first, but the second bottom of MACD-histogram is higher" with the true signal being the indicator's uptick from its second bottom, the reverse procedure can be used to find the tops (Heeding 36). He believes that this type of divergence is rare and happens only at major trend changes (How to 70).

A summary of Elder's trading rules (Using MACD 36):

1. Buy when MACD-histogram declines below its centerline and its slope turns up. Place a stop-loss order below the low of the price bar corresponding to the lowest bar of MACD-histogram.
2. Sell when MACD-histogram rallies above its centerline and then its slope turns down. Place a stop-loss order above the high of the price bar that corresponds to the highest bar of MACD-histogram. Remember that tops normally take more time to form than bottoms. Buy fast and sell short slowly.
3. The best buy signals are given by bullish divergences between MACD-histogram and price. When prices decline to a lower or equal low but MACDhistogram holds above its previous low, buy as soon as the indicator ticks higher. Place a stop below the price low corresponding to the latest bottom in MACD-histogram.
4. The best signals to sell short are given by bearish divergences between MACD-histogram and price. When prices rise to a new high but MACD-histogram makes a lower top, sell as soon as the indicator ticks lower. Place a stop above the high associated with the tallest bar of MACD-histogram at the second top."

Not everyone is as enthusiastic about MACD as Stein and Elder. Seykota (36) cites several studies that have indicated that MACD is less than accurate and timely. According to The Encyclopedia of Technical Market Indicators (281), MACD "substantially underperforms a 40 -week simple moving average crossover rule." The Dow Jones Irwin Guide to Trading Systems, says Seykota, finds that MACD displayed inferior results to other moving average methods and combinations and other tests confirm these findings. The fact that MACD anticipates is counterproductive since the "whole advantage of using moving averages is that they are slow and give signals when a market's trend is well under way." Traders who rely on the trend believe "the best time to trade is well into the trend, with momentum" (Seykota 36). The anticipation may pick a top, but is more likely to pick up on false signals and create a whipsaw.

Seykota concludes that for long-term trading, MACD underperforms other systems and that MACD's short-term trading results are poor. Advocates of MACD counter these accusations by saying that MACD is not a signal but rather it is an
indicator that should only be used in conjunction with other indicators.

Relative Strength Index One of the most popular technical tools, the Relative Strength Index (RSI), was developed by technician J. Welles Wilder in 1976. It is frequently referred to as Wilder's Relative Strength to distinguish it from another technical tool known as the Relative Strength Indicator. The RSI is an oscillator that measures the market's strength and weakness depending on where prices close during a specified period of time. The assumption is that the market is stronger when the closing prices are higher and for a weaker market the closes are lower.

The formula for RSI is 100-(100/1 + (average number of up closes/average number of down closes). The result is often smoothed using a moving average before being graphed on a scale of zero to one hundred (Stein, Divergence 32). More erratic movements and false signals are generated as the time period is shortened; longer time periods produce an RSI that gives fewer but more reliable signals (Colby and Meyers 433). Wilder suggests using a fourteen-day time period because it generates more precise signals (Elder, RSI 38).

Because RSI depends on ratios, it "is subject to greater volatility, distortions, and erratic movements than smoothed indicators that are not dependent on ratios. This results in
a higher number of signals (and thus higher transaction costs) compared with smoothed momentum indicators that are not dependent on ratios" (Colby and Meyers 433).

The major application for RSI is as an overboughtoversold indicator. Welles suggests that an RSI over seventy is indicative of an overbought market and that an RSI reading below thirty means the market is oversold (Aan 76). Babcock (56) says Wilder also believed that if the RSI line crossed above or below the fifty mark that it was pointing to a trend change. Some traders have found that during long-term downtrends the index usually remains below sixty while during rallies it stays above forty (Stein, Traders 28). Elder (Explaining 36) cautions that oscillators will often produce premature signals when a market trend begins.

RSI is actually a way to quantify price momentum or velocity. A chart of the RSI resembles a price chart and some investors utilize trendlines and moving averages to decipher the pattern. A broken RSI trendline very often corresponds to a broken price trendline (Stein, Twists 24). Elder (RSI 38) says the RSI often "breaks its trendline one bar earlier than price."

When RSI enters the overbought-oversold zones, traders believe a top or bottom price is near. RSI's overboughtoversold zones are seventy and above and thirty and below, respectively. Sells should be initiated after the RSI has
been above seventy and then drops back down below it while buys are flagged when the RSI rises above thirty after being below (Stein, Twists 24). According to Elder (RSI 38), there is a danger that the RSI can remain overbought for a considerable length of time during a strong rally and oversold during extended declines. This could result in premature buys and sells that could denigrate returns.

Andrew Cardwell uses a revised overbought-oversold range. He prefers different ranges for uptrends and for downtrends. Uptrends appear to explore the eighty-forty range while downtrends vary between sixty and twenty. Other technicians agree that uptrends usually have higher RSI tops and bottoms while downtrends show lower tops and bottoms. When RSI stays between eighty and forty or sixty and twenty, it is telling you the trend. Even though Cardwell favors the revised ranges, he still believes that most long-term divergences occur at the seventy-thirty level (Stein, Twists 25).

Cardwell also defined the positive and negative reversal patterns in the Relative Strength Index. According to him, a positive reversal occurs when prices top, retreat, rise to a higher top and then again retreat, but to a higher low. The Relative Strength Index traces a similar pattern to the price, however, the second retreat drops to a lower low. The positive reversal pattern is indicative of a market that is preparing to rise to new highs. As Cardwell explains, the
lower RSI creates a "spring effect likely to push the market even higher, like an athlete who jumps from a crouch" (Elder, RSI 38). The new projected high is equal to the distance from the first price low to the second, higher, top plus the distance from the second top to the second bottom.

A negative reversal is marked by a price peak that is lower than the previous peak while the RSI's second peak is higher than the first peak. This pattern is often interpreted as reflecting a bullish market. In other words, the market is more overbought at a lower price level. The positive and negative reversals are frequently used with bullish and bearish divergences to help interpret the market trend.

One of the most valuable trading signals, according to Elder (RSI 38), is divergence. A divergence is the opposite of a confirmation where RSI and price replicate each other's pattern. While divergences rarely occur, it provides an opportunity for substantial gains at reduced risk. Bullish divergence results when prices are at a low, rally, and then fall even lower. At the same time the RSI pattern is similar only the second low is higher than the first indicating that bullish strength is forming even though prices are weak. Thus, prices should strengthen in the near future.

A bearish divergence pattern is when prices rise, fall, and then rise even higher while the second RSI top is lower. This format shows that the market is losing momentum despite
the stronger price (Elder, RSI 38). This pattern is a sell signal since it is often an advance signal that a top may be forming (Aan 76).

By plotting RSI beneath a daily price chart, it is relatively easy to spot divergences. It displays many of the same formations as prices such as peaks and troughs and trendlines. Stein (Divergences 33) uses the rule that a signal is stronger the more time that elapses between peaks or between lows and the "long-term, larger-scale divergences on the weekly charts" are a more important indicator. Other technicians only consider the divergences that occur in the RSI's buy or sell zone (Stein, Twists 24).

Relative Strength Indicator Unrelated to the Relative Strength Index, the Relative Strength Indicator is "simply the ratio of one data series divided by another" (Colby and Meyers 431) and is used to describe the stock's performance relative to the overall market. To calculate the indicator for an individual stock, the stock's price is divided by a more general market index (such as the Standard \& Poor's 500 Index). The resulting ratio can then be plotted on a line chart where trendline analysis, moving averages, and other analytical techniques can be employed.

Strong relative strength trends within a industry group often endure for years. When major trend changes begin to occur, the relative strength gradually loses momentum with the
actual trend change taking several months to evolve. Alan Shaw of Smith Barney, analyzes weekly and monthly relative strength ratios with raw price data, watching for "tandem confirmation (suggesting the continuation of an existing trend) or divergence (suggesting a significant trend change)" (Colby and Meyers 431).

Momentum An overbought/oversold indicator, Momentum measures the rate that prices are rising or falling. The indicator is computed by "adding or subtracting price differentials from one period to the next" (Stein, Traders' 28). An overbought/oversold condition is marked when the indicator, plotted as a histogram, crosses the zero line. The universal practice is to buy when the indicator passes up through the line, and to sell when it passes down through it. When the crossovers follow divergences, the signal is even more accurate.

As with moving averages, the time length is very important with momentum. Many experts counsel using a time length that matches the cycle of the market under analysis. Caution is suggested, however, when trying to use the indicator during strong, long-term trends because of the possibility of false signals (Stein, Traders' 28).

Stochastics George Lane is recognized as developing stochastics, a momentum or price velocity indicator that signals trends and overbought/oversold conditions. Some
technicians believe that stochastic signals reversals at least one to two weeks before MACD (Elder, Using Stochastics 72). The concept is to detect crossovers for trends but only those in overbought/oversold regions. Closing prices are recorded and tracked to discover if the trend is bullish or bearish. The idea is that during rallies, the daily prices will close near their top, however, if the closing tick begins to fall while prices continue to rise, the trend is thought to be growing weaker and a trend reversal is possible (Elder, Three 36), The obverse is true for downtrends, while closing prices are near the bottom of the range, the trend will continue down, however, when closing prices graduate higher within the range, strength is building for a trend reversal.

Stochastics represent the daily closing price as a percentage of the closing prices for a predetermined time range, normally five to eighteen days. This percentage is then smoothed by several moving averages. Two numbers are generated, \%K also called raw stochastic and \%D which is called smoothed stochastic and is actually a smoothed moving average of \%K. Some technicians calculate an even "slower" version of $\%$ D by subjecting it to another layer of averaging. This slower version decreases whipsaws and is better fitted for use with longer-term tactics and for more conservative traders (Elder, Using Stochastics 68).

The stochastic $\%$ D is plotted on a chart and oscillates between zero and one-hundred. Zero indicates that today's close is equal to the lowest price in the period tested and one-hundred signifies that the close is equal to the highest price in the period. Signals are generated as it crosses above seventy-five (over-bought) and below twenty-five (oversold) (Stein, What Divergence 33).

Elder (Three 36 and Using Stochastic 70) and Stein (Traders' 29 and Learning 36) provide guidelines on how to utilize the stochastic signals:

1. The stochastics line direction displays the immediate trend. Bearish trends are displayed when $\% \mathrm{~K}$ crosses below $\% \mathrm{D}$ and bullish when it crosses above \%D. A new trend is being established when $\% \mathrm{~K}$ is initially above 75 and then crosses down below 75 or when $\% \mathrm{~K}$ crosses above 25 when initially below 25. Elder believes that double bottoms and double tops provide particularly strong signals and even more especially when divergence occurs. George Lane adheres to the concept that the trends involve three rallies or three declines.
2. Overbought/oversold analysis uses \%D, its readings are reliable for identifying short-term tops and bottoms when a market is in a trading range. When the market begins trending, this method should not be relied upon.
3. Divergence between the indicator and the price provide lucrative signals with \%D tending to be more effective than $\% \mathrm{~K}$. A bearish divergence happens when prices rise, pause, then rise to new highs but the indicator rises, pauses, then rises to a lower high. For a bullish divergence,
prices drop, pause, and then drop lower while the indicator falls, pauses, and falls to a higher low.

Stochastics must be interpreted, it is not simply a mechanical tool that replaces judgement since crossovers may occur when trends are not changing or divergence may give false signals. Stein (Learning 36) cautions that one must learn how to utilize stochastics to screen out false signals. One warning that Stein issues is to ignore bullish divergence between the overbought and oversold zones unless it occurs in a powerful bull market. Another caution is that while stochastics is a powerful tool on daily and hourly charts, it should be viewed with caution on weekly charts (Stein, Traders' 29).

The Encyclopedia of Technical Indicators (Colby and Meyers 473) advises that stochastics "can jump around erratically due solely to data for the oldest period being dropped off" creating an inherent weakness for unstable, false signals. It also believes that the best indications for buys are in the ten to fifteen percent range while sells are more reliable when occurring in the eighty-five to ninety percent zones.

Directional Movement One technical indicator that is time-consuming to calculate is Directional Movement Index (DMI). This trend flag is actually three distinct pointers: a +DI (upward movement, i.e., percent that today's high is
above yesterday's high), -DI (downward movement, i.e., percent today's low is below yesterday's low), and ADX (average directional index, i.e, the $+D I$ and $-D I$ netted to a single plus or minus figure). The daily direction is calculated by averaging the true daily ranges and dividing this figure into an exponential moving average of the up directional movements; the same procedure is performed on the down directional figures. Both of these lines are plotted on a graph to show the trend (Stein, Traders' 30 and Babcock 56).

The +DI attempts to assess the force of upward pressure, -DI the force of downward pressure and ADX the tendency for trending in general. However, DMI is virtually useless in trendless markets. The entire DMI philosophy is based on comparing today's range to yesterday's range. While the ADX by itself is a gauge of bullish or bearish trends, the correlation of the $A D X$ to the other two indexes is also meaningful (Stein, Traders' 30).

Crossovers between -DI and +DI inaugurate trades: "Buy when +DI rises above -DI, sell from the converse" (Stein, Traders' 30). The more elevated the ADX, the more powerful the trend. If the $A D X$ peaks and begins to drop, the market anticipates an important trend change. For assistance in reducing a position, on long positions, Stein (Trader's 30) instructs to "wait for + DI to break below the ADX line and
then ADX itself turns down. The same goes for a short position but use -DI."

Price and Volume Many technicians believe that the "absolute value of price change is positively and linearly related to volume" (Rogalski 268), with volume being measured as the number of shares being bought and/or sold in a given time period. The theory maintains that with a stock at equilibrium, an increase or decrease in demand (volume) will create a price above or below equilibrium. Transactions only occur as a result of demand, thus a rise or fall in volume (demand) will cause prices to rise or fall. Rogalski (268) credits Copeland with testing the direction of the demand/price correlation. Copeland, using volume as representative of information dispersal to the market, concluded that there is a positive and linear relationship if sequential information is legitimate. An inverse correlation would occur if the hypothesis of simultaneous information arrival was valid.

Rogalski's study suggests that awareness of volume behavior may enhance price projections. He warns, however, that causality is not determined by his methodology. Thus, volume may cause price, price may cause volume, or there may be price-volume feedback. Nonetheless, all instances are suggestive of price-volume dependence. Bohan (36) also theorizes that price and volume analysis may detect trading
pattern changes and assist in creating an above average return. Epps (586) is another who contends that the volume of shares traded is higher in bull markets and lower in bear markets.

The results of Charles Ying's (Epps 586) testing of price and volume found that sizable volume increases are usually attended by large price modifications while meager volumes generally accompany lower prices. This study has been questioned, however, because the effects of dividends and new issues have not be confronted.

Discretion should be used since volume is subject to forces such as seasonal patterns, holidays, arbitrage, etc., that may misrepresent true demand and supply. Another area for caution is when volume is trending up, rather than confirming a trend, it may be a crowd reaction at a pivot point (Colby and Meyers 515). Colby and Meyers continue that volume is a "erratic, unreliable barometer of the market . . . indicators weighted significantly by volume appear to suffer from the instability of the volume data itself."

CHAPTER III

TESTING OF THREE INDICATORS

The only true test of technical indicators is to actually perform buys and sells based on the indicators being utilized. This method assures that buy and sell prices, times, and transaction costs are accurate. Indirect testing makes it virtually impossible to precisely portray reality. However, it must be realized that empirical tests are subject to biases since each indicator requires analysis and interpretation, resulting in the possibility that one-hundred technicians could come up with the same number of readings based on a specific indicator, creating different buy and sell trigger points and, thus, impacting return considerably. Each indicator can also be based on different criteria; the decision to use simple or exponential moving averages or adjusting the length of the time span used to calculate the indicator will result in different buy and sell positions.

Study Design

This study is designed to see if the average investor can use moving averages, MACD, and Wilder's Relative Strength to determine effective buy and sell signals that create better returns than a simple buy-and-hold strategy. Ten stocks were chosen at random, the critera being that they were well-known and that the data base from which the information was garnered held sufficient data on which to test the indicators. The
"Telescan System" was utilized to locate the stock data and for computing the indicators and plotting the graphs. The earliest Telescan data available for the stocks chosen was October 3, 1988, and an ending date of March 17, 1993 was used. In an effort to keep the testing simple, the indicators were not combined in any manner, rather each indicator was viewed in a vacuum as it related to the individual stock. Simplistic interpretation methods, as outlined below for each indicator, were utilized in reading the indicators; while this may impact the returns generated, it was a trade-off against the possibility of creating interpretation biases produced by a specific individual's reading of the indicator.

Moving Average

In selecting a moving average, it was decided to test the difference between a twenty-five day and a nine-day exponential moving average. This choice was based on suggestions in the "Telescan System" information as being a starting point for moving average analysis. Both moving averages were plotted on a single graph with the difference displayed at the bottom of the graph. The difference is plotted around a zero line. The zero line indicates the point where the two moving averages cross which is defined as the buy or sell position. When the difference line crosses the zero line upward, a buy signal is indicated. When the
difference line crosses the zero line downward, a sell signal is given (see Figure 1).

MACD

Two MACDs were utilized for this test, one for the buy signal (8-17-9) and a different length for the sell signal (12-25-9.) For the buy, an eight-day fast moving average, a seventeen-day slow moving average, and a nine-day exponential moving average of their difference for the signal line was selected. The sell MACD employed a twelve-day fast MA, a twenty-five day slow MA, and a nine-day difference for the signal line. The MA lengths for both the buy and sell signals were the recommendations of MACD's creator, George Appel. The MACD was plotted as a histogram, which makes reading the indicator easier. A buy signal is given when the MACD histogram moves above the zero line from negative to positive. A sell signal occurs when the histogram moves across the zero line from positive to negative. (See Figure 2.)

Wilder's Relative Strength

The final indicator tested was Wilder's Relative Strength Index. Seventy percent was used as the overbought point and thirty percent was the oversold condition. When the RSI crossed the seventy percent line going downward, a sell signal was generated. When the RSI crossed the thirty percent line going upwards, a buy was indicated. (See Figure 3.)

25 DY|9 DY|0 DY|CLOSE \mid SH-OFF |EXP $\$ 7454$ ٪ENU
Figure 1. Moving Average - 25-Day and 9-Day Difference

Figure 3. Wilder Relative Strength Index

Test Data

(Appendix A contains detailed information for the stocks in the study). Using the "Telescan System", price and volume information was plotted for each of the ten stocks for the period October 3, 1988, through March 17, 1993. Using this information as a base, each of the three indicators was calculated and plotted by Telescan and the resulting buy and sell prices and dates, as determined utilizing the criteria outlined for each indicator, were logged in a spreadsheet. The profit or loss for each buy and sell was calculated as well as the number of days during which the stock was not being held. For the time periods when the funds were not invested in the stocks, income was calculated as if it were invested at a rate equal to the average prime rate for the October 3, 1988, through March 17, 1993, time span.

An arbitrary decision was made to purchase one-hundred shares of stock at each buy signal. If the indicator was not in a buy position on October 3, 1988, the funds were considered invested at the average prime rate. If the indicator was in a buy position, one-hundred shares were considered purchased on that date. At the end of the time period, (March 17, 1993), if the stocks were currently held, they were deemed sold and the profit or loss was calculated; if the stocks were not held at the ending date, then the investment at the average prime rate was considered terminated
and the resulting income was recorded. Dividends were included as part of the return if the stocks were held on the ex-dividend date. The transaction costs were calculated at twenty-nine dollars per each buy and sell, this is the rate available to the average investor using a discount broker. The returns from using the indicators were compared to a buy-and-hold strategy and also to the results if the funds had been invested for the entire time period at the average prime rate. A summary of the results for each strategy is in Appendix B.

In only one instance did the indicators provide a better return than a simple buy-and-hold or investing at the average prime rate. For Edison Brothers, using the difference between a twenty-five day and nine-day moving average as the trigger, a return of $\$ 4,548$ was generated (see Table 1). This was $\$ 1,272$ greater than that provided by a buy-and-hold strategy. In only two cases (Boeing and Loews) did the investment at the average prime rate provide a greater return than the buy-andhold.

The average income per each buy and sell trigger for each indicator is displayed in Tables one, two and three. The highest average (\$454.76) was for Edison Brothers, based on the moving average indicator. The lowest average (<\$139.16>) was also for Edison Brothers, utilizing Wilder's Relative Strength. Over all stocks, the moving average generated a
$\$ 1,210$ average income with a standard deviation of 2035.7998 . Wilder's Relative Strength produced an average income of $\$ 888$ with a 1354.8328 standard deviation, and, finally, MACD provided a $\$ 182$ average income with a 1451.1796 standard deviation.

Table 1. Statistics for moving average indicator with a comparison to buy-and-hold

	Indicator Indicator Without With Dividends \& T						
	$\begin{array}{r} \text { No. } \\ \text { Sigs. } \end{array}$	Div \& C Income	Income	Buy/Sell Avg Inc.	Standard Deviation	 Hold	Invest Avg Prime
Avon	28	\$4,027	\$3,928	\$262	479.6186	\$4,791	\$1,179
Boeing	42	348)	(1,270	(58)	434.4578	1,003	1,354
Bristol	41	1,113	608	29	329.6135	2,179	2,127
Colgate	28	3,250	2,750	183	354.107	4,766	1,076
Edison	18	4,673	4,547	455	721.6747	3,276	707
Hershey	44	564	479)	(21)	345.8637	3,204	1,209
Loews	37	1,361	523	28	945.9422	2,980	3,819
P. Morris	35	4,219	2,778	154	691.3597	4,764	1,172
P. Petroleum	44	(498)	(1,474)	(64)	111.242	1,102	882
Serv. Master	36	\$ 911	182	10	194.6633	1,807	780

All stocks: Average Income $=\$ 1,210 \quad$ Standard Deviation=2035.7998 $\quad t=1.88$

Table 2. Statistics for Wilder's relative strength indicator with a comparison to buy-and-hold

	$\begin{array}{r} \text { No } \\ \text { Sigs } \end{array}$	Indicator Without Div \& Costs Income		Indicator With Dividends \& Tran Costs			Buy \& Hold	Invest Avg Prime
				Income	Buy/Sell Avg Inc.	Standard Deviation		
Avon	24	\$3,361		\$3,156	\$263	543.3538	\$4,791	1 \$1,179
Boeing	16	275		24	3	543.6745	1,003	3 1,354
Bristol	19	637		557	70	561.3366	2,179	9 2,127
Colgate	17	2,387		2,179	272	196.3547	4,766	6 1,076
Edison	20	(1,051)	(1,391)	(139)	850.9634	3,276	$6 \quad 707$
Hershey	17	1,301		935	104	203.7656	3,204	4 1,209
Loews	26	(386)	$($	934)	(67)	600.9984	2,980	0 3,819
P. Morris	17	2,363		2,354	262	694.3437	4,764	4 1,172
P. Petroleum	14	1,112		1,002	143	236.8237	1,102	2882
Serv. Master	15	1,099		1,003	125	104.9796	1,807	$7 \quad 780$
All stocks:	Avg In	come $=$ \$ 888		St	andard Devi	ation=1354.	328	$t=2.07$

Table 3. Statistics for Moving Average Convergence/Divergence (MACD) indicator with a comparison to buy-and-hold

	No. Sigs.	Indicator Without Div \& Costs Income	IndicatorWith Dividends \& Tran Costs				
			Income	Buy/Sell Avg Inc.	Standard Deviation	Buy \& Hold	Invest Avg Prime
$\overline{\text { Avon }}$	32	\$2,687	\$2,410	\$142	728.2565	\$4,791	1 \$1,179
Boeing	42	(398)	$(1,379)$	(63)	295.162	1,003	31,354
Bristol	35	525	258	144	10.9461	2,179	9 2,127
Colgate	34	2,488	1,826	101	332.3376	4,766	6 1,076
Edison	27	1,623	1,239	88	721.6651	3,276	$6 \quad 707$
Hershey	48	850	(312)	(12)	208.7644	3,204	4 1,209
Loews	38	(488)	$(1,334)$	67	1024.631	2,980	0 3,819
P. Morris	39	2,479	753	38	633.1057	4,764	4 1,172
P. Petroleum	56	1,075	$(2,398)$	(83)	121.5523	1,102	2882
Serv. Master	42	1,713	746	34	266.6917	1,807	$7 \quad 780$

All stocks: Avg Income $=\$ 182 \quad$ Standard Deviation=1451.1796 $\quad t=.40$

Of the ten stocks chosen for the study, seven were very large corporations (Boeing, Bristol-Myers, Colgate, Hershey, Loews, Phillip Morris, and Phillips Petroleum). The remaining three were smaller, less diversified companies (Avon, Edison Brothers, and ServiceMaster). Of these three, Edison Brothers is the least known and more likely to be a "trading" stock (i.e., less likely to provide a consistent return over time). I believe this is the reason the moving average indicator was able to generate a greater return than using a buy-and-hold strategy.

Thus, for this study, the technical indicators were unable to generate a consistent improvement to returns from a buy-and-hold approach. Whether this would have been the case if the stocks chosen for testing had been less widely held and
known companies should be examined. Perhaps utilizing an approach similar to Sweeney's (New), wherein the list of stocks to trade should be revised periodically based on the results provided by utilizing the indicator, should be considered.

CHAPTER IV

CONCLUSION

There are conflicting views on whether technical analysis is a valid system for tracing the market and individual stocks. The opposing sides are vehement in the defense of their convictions.

Seykota believes that using technical indicators requires an emotional aptitude. Many traders do not want to deal with their emotions and abandon their systems instead of following the rules. He continues that indicators "do not predict--they either just dict (say what's happening) or postdict (say what's happened)" (37). I disagree with his position that it is the lack of emotion that leads them to forego their systems, rather it is the surplus of emotion that causes them to abandon systems and to rely on their gut instinct.

Brock, Lakonishok, and LeBaron (1733) raise the concern of data snooping that may possibly cause the location of "patterns" to emerge. Individuals who are intensely scrutinizing information, such as stock prices and volumes, are more likely to find patterns, even if they are spurious. They continue with support from cognitive psychology that theorizes that an individual's natural inclination is to focus on the unusual. These proclivities lead to the potentiality for selection bias and significance enhancement on what may otherwise be unrelated information. Epps (590) also
reinforces this point by his observation that people more readily accept information that supports their currently held views.

Recently, there has been more support for technical analysis. The Random Walk, so efficiently supported by Fama, has been challenged from several angles. Fama (Efficient 415416) felt that the strong form efficient market "for the purposes of most investors. . .seems a good first (and second) approximation to reality" since the only groups who have monopolistic access to information is corporate insiders and specialists. While insider information may not permeate down the market very far, it does make the market inefficient. Non-random price patterns have been one clue to the inefficiency. The price patterns are consistent with the twohundred year trend in earnings and dividends. Colby and Meyers (413) do not believe this anomaly can be explained away, and concede that it appears that some technical methods may provide excess profits, at least at times.

Brock, Lakonishok, and LeBaron also found irregularities in the Random Walk and cited several studies that found indications that past returns are helpful in predicting future returns. They offer two opposing explanations: "(1) market inefficiency in which prices take swings from their fundamental values, and (2) markets are efficient and the predictable variation can be explained by time-varying
equilibrium returns" (1732). However, they have provided no evidence to support either conclusion.

Pruitt and White (Crisma), Epps, and Rogalski similarly have found positive correlation between price changes and volume changes; Bohan and Brush (Eight) found that relative strength indicators may assist in providing price predictions.

Even though providing support, some researchers caution investors on utilizing technical analysis without thinking. Some traders get carried away using indicators and lose sight of the markets. They forget most indicators deal with only a few numbers: open, high, low, and closing prices plus volume. These numbers can only be explored in a limited number of ways. Technicians who attempt to combine several indicators may only get an illusion of thoroughness and run the risk of amplifying both good and bad findings. Babcock (56), for instance, believes that "common sense suggests there are only so many ways to massage past price data. It should not be surprising that indicators of the same kind tend to give signals at about the same time." One of the canons of using technical analysis successfully is to combine several indicators, choosing ones that cancel out each other's negative features and yet leave the positive features undisturbed. Thus, having access to information itself does not help, one must be able to assess the information's importance and meaning to be able to "cash-in" on its worth.

So, is technical analysis a worthwhile task? Fama, (Behavior 35) helps to answer this question. Although speaking about the minimum acceptable level of dependence, his comment that it depends on the point of view being considered is also valid in relation to the concerns of the overall validity of technical analysis. This is where academicians and technicians understanding falls apart. For a statistician conducting tests on successive price changes, if the dependence can not account for the property being tested, then the assumption of independence can be justified. On the other hand, a technician will use very practical rules in determining dependence, such as can the knowledge of past price changes be used to increase return? The investor would "accept the theory of random walks as the better model if the actual degree of dependence cannot be used to produce greater expected profits than a buy-and-hold policy (Fama and Blume 226). Thus, the trader's assessment of the importance and consequences of dependence is and always will be quite different from that of a statistician.

Pruitt and White (Crisma 55) also note that most tests of specific trading techniques are usually indirect tests in that they do not actually measure the returns that are generated. The only way that a valid test of technical analysis can occur is if it is carried out, which is what I believe many large mutual funds do.

Some of the issues yet to be resolved before the question echnical analysis can be fully answered are:

1. Does standard statistical testing adequately describe the market for investors?
2. Do statistical methods adequately measure the data that technicians evaluate?
3. Can the price patterns be modeled by simple linear relationships?
4. Is equilibrium a range rather than a finite value?
5. Does it pay for the average investor to expend resources searching out little known information?
6. Do only certain types of stocks lend themselves to technical analysis?

REFERENCES

Aan, Peter W. "How RSI Behaves." Futures Jan. 1985: 76.
Aspray, Thomas E. "Spicing Up Moving Averages to Get Better Trading Signals." Futures April 1989: 44-45.

Babcock, Bruce Jr. "Beware of Too Many Price-Based Indicators." Futures Jan. 1985: 56-57.

Bohan, James. "Relative Strength: Further Positive Evidence." Journal of Portfolio Management Fall 1981: 36-39.

Brock, William, Josef Lakonishok, and Blake LeBaron. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns." The Journal of Finance Dec. 1992: 1731-1764.

Brush, John S. "Eight Relative Strength Models Compared." The Journal of Portfolio Management Fall 1986: 21-28.

Brush, John S. and Keith E. Boles. "The Predictive Power in Relative Strength and CAPM." Journal of Portfolio Management Summer 1983: 20-23.

Colby, Robert W. and Thomas A. Meyers. The Encyclopedia of Technical Market Indicators. Homewood, IL: Dow JonesIrwin, 1988.

Crim, Elias. "Does the Dow Theory Work for Index Traders?" Futures October. 1984: 72-73.

Drew, Garfield A. New Methods for Profit in the Stock Market. Boston: Metcalf, 1948.

Elder, Alexander. "Explaining the Triple Screen System." Futures June 1990: 36.

Elder, Alexander. "Heeding 'The Hound of the Baskervilles'." Futures July 1990: 36.

Elder, Alexander. "How to Use MACD to Catch Price Trends Early." Futures Sept. 1986: 68-70.

Elder, Alexander. "RSI's Variety of Messages." Futures April 1990: 38.

Elder, Alexander. "Three Signals from Stochastic." Futures March 1990: 36.

Elder, Alexander. "Using MACD and MACD-Histograms." Futures May 1990: 36.

Elder, Alexander. "Using Moving Averages." Futures Feb. 1990: 32.

Elder, Alexander. "Using Stochastics to Catch Early Trends and Reversals." Futures June 1987: 68-72.

Epps, Thomas W. "Security Price Changes and Transaction Volumes: Theory and Evidence." The American Economic Review Sept. 1975: 586-597.

Fama, Eugene F. "The Behavior of Stock-Market Prices." The Journal of Business Jan. 1965: 34-99.

Fama, Eugene F. "Efficient Capital Markets: A Review of Theory and Empirical Work." The Journal of Finance May 1970: 383-423.

Fama, Eugene F. and Marshall E. Blume. "Filter Rules and Stock-Market Trading." The Journal of Business Jan. 1966: 226-241.

Ferguson, Robert. "An Efficient Stock Market? Ridiculous!" Journal of Portfolio Management Summer 1983: 31-38.

Gehm, Fred. "Who is R.N. Elliott and Why is He Making Waves?" Financial Analysts Journal January/February 1983: 51-58.

Glickstein, David A. and Rolf E. Wubbels. "Dow Theory is Alive and Well!" Journal of Portfolio Management Spring 1983: 28-32.

Joy, O. Maurice and Charles P. Jones. "Should We Believe the Tests of Market Efficiency?" Journal of Portfolio Management Summer 1986: 49-54.

Levy, Robert A. "Random Walks: Reality or Myth." Financial Analysts Journal November/December 1967: 69-92.

Levy, Robert A. The Relative Strength Concept of Common Stock Price Forecasting. New York: Investors Intelligence, Inc., 1968.

Malkiel, Burton G. A Random Walk Down Wall Street. New York: Norton, 1973.

Prechter, Robert Rougelot Jr. and Alfred John Frost. Elliott Wave Principle Key to Stock Market Profits. 2nd ed. New York: Haddon Craftsmen, 1981.

Pruitt, Stephen W. and Richard E. White. "The CRISMA Trading System: Who Says Technical Analysis Can;t Beat the Market?" Journal of Portfolio Management Spring 1988: 55-58.

Pruitt, Stephen W. and Richard E. White. "Exchange-Traded Options and CRISMA Trading." Journal of Portfolio Management Summer 1989: 55-56.

Rogalski, Richard J. "The Dependence of Prices and Volume." The Review of Economics and Statistics May 1978: 268274.

Seykota, Ed. "MACD: Sweet Anticipation?" Futures March 1991: 36-37.

Sorensen, Roy A. "An 'Essential Reservation' About the EMH." Journal of Portfolio Management Summer 1983: 29-30.

Stein, Jon. "Learning to Swing to Momentum with Stochastics Signals." Futures May 1989: 36-37.

Stein, Jon. "New Twists to RSI: Finding Trends and Reversals." Futures Feb. 1990: 24-26.

Stein, Jon. "The Traders Guide to Technical Indicators." Futures Aug. 1990: 26-30.

Stein, Jon. "What Divergence Indicates About Real Price Value." Futures July 1989: 32-34.

Sweeney, Richard J. "Evidence on Short-Term Trading Strategies." The Journal of Portfolio Management Fall 1990: 20-26.

Sweeney, Richard J. "Some New Filter Rule Tests: Methods and Results." Journal of Financial and Quantitative Analysis Sept. 1988: 285-300.

Telescan System. Houston: Telescan, Inc., 1992.

Treynor, Jack L. and Robert Ferguson. "In Defense of Technical Analysis." The Journal of Finance July 757-775.

ADDITIONAL READINGS

Arnott, Robert D. and William A. Copeland. "The BusinessCycle and Security Selection." Financial AnalystsJournal March/April 1985: 26-32.
Rosenberg, Barr, Kenneth Reid, and Ronald Lanstein."Persuasive Evidence of Market Inefficiency." Journal ofPortfolio Management Spring 1985: 9-16.
Schutzman, Fred G. "Smoothing Rate of Change: New Twist to Old Study." Futures April 1991: 30-32.

APPENDIX A

DATA ON INDIVIDUAL STOCKS

AVON - MOVING AVERAGE

	BUY $\$$ BUY DATE	
$\$$	24.38	$10 / 03 / 88$
$\$$	20.00	$12 / 27 / 88$
$\$$	23.25	$04 / 03 / 89$
$\$$	35.50	$08 / 01 / 89$
$\$$	31.25	$11 / 09 / 89$
$\$$	32.38	$03 / 01 / 90$
$\$$	26.00	$11 / 07 / 90$
$\$$	29.75	$01 / 18 / 91$
$\$$	44.75	$07 / 12 / 91$
$\$$	44.88	$10 / 17 / 91$
$\$$	39.50	$12 / 13 / 91$
$\$$	46.25	$03 / 30 / 92$
$\$$	51.50	$06 / 29 / 92$
$\$$	52.25	$09 / 10 / 92$
$\$$	57.25	$01 / 19 / 93$

BUY \$ BUY DATE
$\$ 18.8812 / 08 / 88$
$24.50 \quad 04 / 05 / 89$ $36.50 \quad 08 / 02 / 89$ $31.8810 / 09 / 89$ $32.88 \quad 02 / 05 / 90$ $36.00 \quad 06 / 07 / 90$ 29.50 01/21/91 $44.2507 / 15 / 91$ 44.38 09/23/91 51.50 06/29/92 $50.88 \quad 09 / 08 / 92$ $55.2512 / 31 / 92$ 03/17/93

SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$23.13	10/24/88			(\$ 183)
21.38	03/27/89	\$0.20	\$25.00	105
33.63	07/24/89	1.74	25.00	1,007
34.13	09/15/89		25.00	(170)
34.25	01/11/90	3.46	25.00	270
32.00	08/06/90		25.00	(71)
27.25	01/09/91	. 24	110.00	177
42.88	07/01/91	3.15	220.00	1,478
44.63	09/05/91		110.00	40
41.13	10/29/91			4331
45.50	03/10/92	2.74	35.00	580
49.00	06/10/92	1.19	35.00	253
51.00	08/17/92		40.00	68)
55.38	12/09/92	3.00	40.00	298
3.87	03/1		40.00	644

$\$ 3,928$

AVON - WILDER'S RELATIVE STRENGTH

SELL \$	$\begin{aligned} & \text { SELL DATE } \\ & 10 / 03 / 88 \end{aligned}$	INC MM	DIVID	STK INC
\$ 20.75	01/27/89	\$ 3.01		\$ 132
35.75	05/24/89	18.63	\$25.00	1,111
36.00	08/21/89		25.00	(83)
36.00	11/30/89	6.53	25.00	386
34.00	03/29/90	1.85		56
27.38	11/30/90		135.00	(785)
43.25	03/06/91	42.90	110.00	1,470
46.50	07/31/91	2.86		170
47.13	01/20/92	10.56	35.00	263
52.25	07/22/92	. 85		18
53.50	10/05/92	5.41		209
57.50	02/16/93	1.51	40.00	209

AVON
BUY AND HOLD

BEGIN PRICE $=\$ 24.38$
END PRICE $=\$ 63.87$
100 SHARES
TRAN COST $=\$ 58$
TOTAL DIVID

AVON
INVEST \$ IN MM
INVEST \$2,438
AVG PRIME $=.088$
MONTHS HELD $=54$

[^0]
BOEING - MOVING AVERAGE

BUY \$ BUY DATE \$ 28.00 10/03/88 28.00 12/07/88 27.13 01/16/89 34.13 06/27/89 33.75 07/14/89 39.63 11/20/89 40.75 02/01/90 59.25 07/27/90 46.00 10/17/90 46.13 12/06/90 49.50 03/04/91 $48.88 \quad 04 / 05 / 91$ 46.75 05/10/91 45.50 08/05/91 50.00 10/17/91 46.88 12/26/91 46.25 04/14/92 45.00 06/08/92 40.25 08/07/92 37.38 10/13/92 34.75 12/16/92 35.63 03/15/93

SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$ 27.25	11/11/88		\$19.50	(\$ 114)
27.13	12/16/88			$145)$
33.50	06/20/89		39.00	619
32.38	06/29/89	\$. 92		233)
36.25	10/30/89		19.50	213
38.63	01/26/90	1.20		158)
56.75	07/24/90		47.60	1,590
55.75	08/01/90	. 77		(408)
43.63	11/26/90		23.80	271)
46.13	02/26/91		25.00	33)
47.25	03/20/91		25.00	258)
45.88	04/29/91			358)
45.38	06/26/91		25.00	170)
48.25	10/09/91	. 46	25.00	242
45.13	11/15/91		25.00	520)
46.63	02/12/92		25.00	58)
43.75	05/01/92			308)
42.13	06/18/92			345)
38.50	08/21/92		25.00	208)
35.25	11/12/92		25.00	$246)$
36.13	01/22/93	1.69		82
34.38	03/17/93			183)

$(\$ 1,270)$

BOEING - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE \$ 28.00 10/03/88 27.50 11/25/88 $41.38 \quad 02 / 02 / 90$ 49.25 05/04/90 52.00 08/14/90 49.13 04/04/91 $43.00 \quad 12 / 13 / 91$ 46.63 03/05/92 35.25 02/09/93

SELL \$ SELL DATE \$ 29.13 10/26/88
28.75 03/27/89
$40.00 \quad 02 / 23 / 90$
59.00 06/21/90
46.13 10/29/90
49.38 09/17/91
50.63 01/29/92
37.50 01/14/93
34.37 03/17/93

INC MM	DIVID	STK	INC
$\$$.79		$\$$
9.33	$\$ 19.50$		96
	23.80	$($	$172)$
12.40	23.80		953
	23.80	$($	$621)$
.52	50.00		18
6.41			711
	75.00	$($	$896)$
	25.00	$($	$121)$

BOEING - MACD

BUY \$ BUY DATE $\$ 28.0010 / 03 / 88$
28.00 12/07/88
33.75 07/14/89
39.75 11/20/89
41.00 01/02/90
42.00 02/05/90
48.88 05/03/90
45.38 10/16/90
46.63 11/15/90
46.13 12/06/90
49.25 01/18/91
50.25 03/05/91
48.88 04/08/91
47.00 05/10/91
45.25 08/01/91
49.88 10/21/91
45.38 12/24/91
47.13 04/15/92
45.00 06/08/92
39.75 08/10/92
35.75 12/18/92
35.63 03/15/93

SELL $\$$ SELL DATE INC MM \$ 28.00 11/10/88 $33.38 \quad 06 / 16 / 89$ $36.38 \quad 10 / 27 / 89$ $38.88 \quad 12 / 21 / 89$ 38.63 01/26/90 $46.38 \quad 04 / 30 / 90$ 55.75 08/01/90 44.25 11/08/90 44.25 11/21/90 $44.00 \quad 01 / 08 / 91$ $46.13 \quad 02 / 26 / 91$ $47.13 \quad 03 / 19 / 91$ $47.38 \quad 04 / 10 / 91$ $45.38 \quad 06 / 26 / 91$ 48.25 10/09/91 49.38 10/28/91 $46.63 \quad 02 / 12 / 92$ $44.13 \quad 04 / 30 / 92$ $43.75 \quad 06 / 16 / 92$ 36.13 10/28/92 36.13 01/22/93 34.37 03/17/93

DIVID STK INC
\$19.50 (\$ 39)
$39.00 \quad 522$
$\begin{array}{ll}3.49 & 39.00 \\ 1.45 & 19.50\end{array}$

		$\left(\begin{array}{ll}145) \\ .21 & 23.80 \\ & \left(\begin{array}{ll}295\end{array}\right) \\ 12.37 & 23.80\end{array}\right.$

$\begin{array}{lll}12.37 \quad 23.80 \\ & 25.00\end{array} \quad\left(\begin{array}{l}665 \\ \\ \end{array}\right.$ 146) 271) 345) 370) 208) 268 108) 94 358) 183) 395)
20)
(\$1,379)

BOEING
BUY AND HOLD
BEGIN PRICE $=\$ 28$
END PRICE = \$ 34.38 100 SHARES
TRAN COST = \$ 58
TOTAL DIVID $=\$ 423$

BOEING
INV AT PRIME
INVEST \$2,800
AVG PRIME $=.088$
MONTHS HELD = 54

BRISTOL MYERS - MOVING AVERAGE

```
    BUY $ BUY DATE
$ 44.00 10/03/88
    42.88 11/25/88
    45.13 01/26/89
    46.25 03/09/89
    49.75 06/27/89
    49.38 07/10/89
    49.38 08/24/89
    53.00 02/20/90
    53.00 03/07/90
    61.50 09/04/90
    59.50 10/05/90
    67.00 01/18/91
    78.25 05/01/91
    80.75 07/02/91
    84.50 10/30/91
    80.75 12/20/91
    80.00 03/20/92
    75.75 05/06/92
    66.25 07/09/92
    68.50 09/04/92
    65.00 10/21/92
        03/17/93
```

SELL \$	SELL DATE	INC MM	DIVID	STK	INC
\$ 42.63	10/08/88			(\$	195)
44.00	01/23/89	\$. 05	\$50.00		104
44.88	03/07/89			(83)
47.88	06/15/89	. 43	50.00		155
48.00	07/05/89			$($	233)
48.25	08/02/89			$($	171)
55.63	01/19/90	4.65	103.00		675
52.50	02/21/90			$($	108)
58.50	08/06/90	3.70	106.00		602
60.00	09/18/90			$($	208)
62.00	01/07/91	. 60	60.00		253
75.25	04/29/91	. 20	60.00		827
77.75	06/28/91		60.00	(48)
83.00	09/26/91	1.78			169
81.25	11/20/91			$($	383)
82.63	01/24/92	2.48	69.00		201
77.50	04/01/92		69.00	(239)
73.00	05/15/92			(333)
66.50	08/31/92	. 02		(33)
65.50	09/23/92			$($	358)
65.00	01/05/93		72.00		14
56.37					

BRISTOL MYERS - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 42.88$ 11/25/88 49.75 06/27/89 $48.88 \quad 08 / 23 / 89$ 52.38 02/09/90 60.25 10/02/90 67.00 01/18/91 81.50 10/08/91 $80.50 \quad 02 / 06 / 92$ 67.50 09/02/92 56.50 02/16/93

SELL $\$$	SELL DATE	INC MM	DIVID	STK	INC
$\$ 45.25$	$12 / 27 / 88$	$\$ 10.30$	$\$ 50.00$	\$	239
48.25	$08 / 01 / 89$			$($	$208)$
49.50	$09 / 15 / 89$	2.17			6
53.38	$04 / 19 / 90$	3.96	53.00		99
67.13	$12 / 21 / 90$	4.46			634
74.50	$02 / 26 / 91$	40.14		732	
85.50	$01 / 17 / 92$	1.82	69.00		413
65.75	$08 / 21 / 92$		138.00	$($	$1.395)$
67.75	$12 / 28 / 92$.29	141.00		108
56.37	$03 / 17 / 93$			$\left(\begin{array}{cc}71) \\ & \end{array}\right.$	
			$\$$	557	

BUY $\$$ BUY DATE	
44.00	$10 / 03 / 88$
42.88	$11 / 25 / 88$
45.63	$01 / 27 / 89$
46.25	$03 / 14 / 89$
48.63	$06 / 29 / 89$
49.38	$08 / 24 / 89$
53.00	$02 / 20 / 90$
53.00	$03 / 20 / 90$
56.13	$04 / 30 / 90$
61.00	$09 / 05 / 90$
67.25	$01 / 21 / 91$
79.00	$05 / 06 / 91$
80.00	$07 / 03 / 91$
84.63	$10 / 30 / 91$
81.63	$12 / 23 / 91$
80.13	$03 / 03 / 92$
68.50	$09 / 09 / 92$
66.00	$10 / 20 / 92$

BRISTOL MYERS
BUY AND HOLD
BEGIN PRICE = \$44
END PRICE = \$56.37
100 SHARES
TRAN COST = \$58
TOTAL DIVID $=\$ 1,000$

BRISTOL MYERS
INVEST \$ IN MM
INVEST = \$4,400
AVG PRIME $=.088$
MONTHS HELD $=54$
BRISTOL MYERS - MACD

BUY \$ BUY DATE $42.0011 / 25 / 88$
45.63 01/27/89
46.25 03/14/89
48.63 06/29/89
49.38 08/24/89
53.00 02/20/90
53.00 03/20/90
56.13 04/30/90
61.00 09/05/90
79.00
80.00 07/03/91
84.63 10/30/91

03/03/92
$68.50 \quad 09 / 09 / 92$
66.00 10/20/92

BRISTOL MYERS - MACD

COLGATE - MOVING AVERAGE

BUY \$ BUY DATE \$ 22.25 10/03/88
22.88 12/06/88
22.88 03/08/89
30.75 11/15/89
29.38 03/08/90
29.63 05/07/90
31.75 10/05/90
32.50 10/18/90
35.63 01/21/91
36.25 02/04/91
39.75 05/23/91
39.25 07/18/91
46.88 03/19/92
$52.2506 / 29 / 92$
56.75 01/27/93

SELL $\$$	SELL DATE	INC MM	DIVID	STK	INC
$\$ 22.25$	$11 / 11 / 88$		$\$ 19.00$	$(\$$	$39)$
22.25	$02 / 27 / 89$		19.00	$($	$102)$
30.25	$11 / 08 / 89$	$\$ 1.06$	58.00		738
30.38	$01 / 18 / 90$			$($	$95)$
28.50	$04 / 11 / 90$			$($	$146)$
32.50	$08 / 06 / 90$	4.06	23.00		256
30.75	$10 / 10 / 90$			$($	$158)$
34.38	$01 / 08 / 91$.54	23.00		154
34.13	$01 / 29 / 91$		23.00	$($	$185)$
37.75	$05 / 16 / 91$.22	23.00		115
38.50	$06 / 21 / 91$			$($	$183)$
46.38	$03 / 11 / 92$	1.20	80.00		736
50.13	$06 / 17 / 92$.86	27.00		295
57.50	$12 / 18 / 92$	4.91	62.00		534
65.63	$03 / 17 / 93$			830	
					$\$ 2,750$

COLGATE - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 21.63$ 11/28/88 22.63 03/07/89 28.63 02/12/90 34.63 08/15/90 $35.2501 / 23 / 91$ $38.00 \quad 07 / 16 / 91$ 51.75 06/30/92 56.13 01/14/93

SELL \$ SELL DATE \$ 22.75 12/27/88 25.63 05/24/89
32.25 06/12/90
34.63 11/14/90
$40.00 \quad 04 / 26 / 91$
$43.75 \quad 10 / 15 / 91$
$55.88 \quad 09 / 03 / 92$
57.63 02/18/93

INC MM	DIVID	STK	INC
$\$ 1.85$		$\$$	56
18.94	$\$ 19.00$		280
5.47	19.50		329
	22.50	$($	$36)$
9.12	22.50		449
35.60	26.50		579
13.08	31.00		399
	31.00		123
			$\$ 2,179$

BUY \$ BUY DATE

BUY \$ BUY DATE
\$ 22.25 10/03/88
22.88 12/06/88
$23.00 \quad 03 / 10 / 89$
31.50 11/24/89
31.88 01/02/90
29.00 03/09/90
29.50 05/08/90
31.75 10/05/90
36.75 02/05/91
40.50 05/28/91
39.50 07/19/91
42.38 11/13/91
42.25 11/29/91
48.25 02/27/92
$48.00 \quad 03 / 23 / 92$
51.75 06/30/92
56.75 01/28/93


```
COLGATE
BUY AND HOLD
```

```
BEGIN PRICE = $22.25
END PRICE = $65.63
100 SHARES
TRAN COST = $58
TOTAL DIVID = $486
```

COLGATE
INVEST \$ IN MM
INVEST = \$2,225
AVG PRIME = . 088
MONTHS HELD $=54$

EDISON - MOVING AVERAGE

BUY \$ BUY DATE
\$ 14.63 10/03/88
31.38 11/13/89
$32.1312 / 27 / 89$
32.50 02/12/90
21.25 11/28/90
31.88 12/26/91
37.13 06/15/92
$37.50 \quad 06 / 24 / 92$
45.00 01/12/93
43.38 03/12/93

SELL $\$$	SELL DATE	INC MM	DIVID	STK INC
$\$ 30.75$	$10 / 24 / 89$	$\$ 7.35$	$\$ 90.00$	$\$ 1,651$
30.38	$12 / 19 / 89$		26.00	$\left(\begin{array}{l}132) \\ 29.50\end{array} 01 / 25 / 90\right.$

$\$ 4,547$

EDISON - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE
$\$ 14.6310 / 03 / 88$ $16.1312 / 12 / 88$ 30.75 11/09/89 32.25 01/04/90 38.25 05/15/90 47.50 07/16/90 $24.00 \quad 01 / 17 / 91$ 39.75 08/14/91 36.38 06/11/92 44.38 01/06/93 43.38 03/09/93

SELL $\$$	SELL DATE	INC MM	DIVID	STK	INC
$\$ 15.75$	$11 / 17 / 88$	$\$$.65		$\$$
55					
18.88	$02 / 15 / 89$	17.56	$\$ 22.50$		257
33.25	$12 / 13 / 89$	1.26			193
31.25	$02 / 27 / 90$		26.00	$($	$132)$
44.00	$06 / 18 / 90$	3.73	26.00		547
22.25	$12 / 27 / 90$		52.00	$(2,531)$	
29.75	$02 / 14 / 91$	24.84			542
34.63	$01 / 14 / 92$		54.00	$($	$516)$
39.00	$07 / 20 / 92$	10.63			215
44.75	$02 / 11 / 93$.22		$($	$21)$
43.25	$03 / 17 / 93$				

$$
\begin{array}{rl}
\text { BUY } \$ \text { BUY DATE } \\
\$ 16.00 & 12 / 12 / 88 \\
32.63 & 11 / 17 / 89 \\
32.00 & 01 / 10 / 90 \\
32.13 & 02 / 13 / 90 \\
38.25 & 05 / 15 / 90 \\
47.25 & 07 / 16 / 90 \\
21.25 & 11 / 28 / 90 \\
24.00 & 01 / 18 / 91 \\
36.00 & 10 / 03 / 91 \\
37.63 & 04 / 15 / 92 \\
38.00 & 05 / 01 / 92 \\
38.38 & 06 / 26 / 92 \\
45.88 & 01 / 15 / 93 \\
43.38 & 03 / 12 / 93
\end{array}
$$

SELL $\$$	SELL DATE	INC MM	DIVID	STK INC
$\$ 32.00$	$10 / 20 / 89$	$\$ 10.37$	$\$ 90.00$	$\$ 1,642$
30.38	$12 / 19 / 89$		26.00	$\left(\begin{array}{rl}257) \\ 30.75 & 01 / 24 / 90\end{array}\right.$
35.13	$05 / 07 / 90$		26.00	(83)
25.50	$07 / 06 / 90$.50	26.00	$(1,307)$
43.00	$07 / 24 / 90$			$\left(\begin{array}{l}483) \\ 22.25\end{array} 01 / 10 / 91\right.$

EDISON BUY AND HOLD BEGIN PRICE $=\$ 14.63$ END PRICE $=\$ 43.25$ IOO SHARES TRAN COST $=\$ 58$ TOTAL DIVID$\quad \$ 472$

EDISON
INVEST \$ IN MM
INVEST \$1,463
AVG PRIME = . 088
MONTHS HELD $=54$

HERSHEY - MOVING AVERAGE

SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$ 25.75	11/10/88	\$. 49		\$ 17
25.00	02/27/89		\$19.00	64)
31.75	08/17/89	1.48	19.00	524
31.88	09/13/89			170)
33.88	01/12/90	1.16	25.00	56
31.25	04/27/90			83)
35.25	08/06/90	. 50	25.00	268
35.00	08/17/90			308)
35.38	09/20/90			(320)
35.38	10/16/90			(308)
35.13	10/23/90			(220)
34.63	11/23/90		23.00	(147)
36.00	01/08/91	. 22		54
41.50	06/18/91	1.42	45.00	300
40.50	07/11/91			208)
40.88	07/24/91			183)
40.75	08/19/91			(171)
40.38	09/05/91			(195)
37.25	11/21/91		25.00	283)
41.13	01/31/92	. 11		55
42.13	02/27/92		25.00	(208)
39.75	05/14/92			(158)
53.38	03/17/93		81.00	1,273

HERSHEY - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 25.0010 / 03 / 88$ 25.50 12/07/88 $33.00 \quad 08 / 31 / 89$ 31.75 02/09/90 37.88 10/01/90 39.38 01/18/91 42.00 07/05/91 37.75 12/02/91 40.25 03/30/92

SELL \$ SELL DATE INC MM DIVID STK INC $\$ 26.88$ 11/01/88 \$ 1.58 \$ 132 $28.13 \quad 05 / 01 / 89 \quad 7.64 \quad \$ 18.50 \quad 231$ $34.00 \quad 10 / 16 / 89 \quad 2.76 \quad 45$ 31.25 03/27/90 38.25 12/26/90 40.38 02/13/91 40.25 10/25/91 43.63 01/14/92 42.75 07/23/92

	24.80	$($	$83)$
.20	22.50		2
3.38			45
	24.50	$($	$209)$
10.58		541	
14.16	24.50		231
		$\$$	935

HERSHEY - MACD

BUY $\$$ BUY DATE	
25.00	$10 / 03 / 88$
25.63	$12 / 12 / 88$
26.13	$02 / 02 / 89$
26.38	$03 / 09 / 89$
26.50	$03 / 31 / 89$
33.25	$09 / 01 / 89$
32.50	$09 / 25 / 89$
31.63	$03 / 08 / 90$
33.00	$05 / 04 / 90$
37.00	$09 / 04 / 90$
36.75	$10 / 02 / 90$
35.63	$11 / 13 / 90$
36.38	$12 / 04 / 90$
39.38	$01 / 18 / 91$
40.13	$03 / 21 / 91$
41.88	$05 / 03 / 91$
41.75	$07 / 01 / 91$
41.88	$08 / 26 / 91$
39.75	$10 / 14 / 91$
40.00	$12 / 16 / 91$
43.63	$02 / 07 / 92$
40.38	$04 / 20 / 92$
40.13	$06 / 02 / 92$
43.50	$09 / 02 / 92$
48.00	$12 / 18 / 92$

SELL \$	SELL DATE	INC MM	DIVID	STK	INC
\$ 25.38	11/11/88	\$. 27		(\$	20)
25.25	01/24/89			(96)
25.00	02/27/89		\$18.50	(153)
25.38	03/21/89			(158)
32.38	08/16/89	2.12	18.50		551
32.63	09/06/89			$($	120)
34.38	01/11/90	2.48	24.80		157
31.75	04/26/90	. 02		(46)
36.00	08/07/90	1.94	24.80		269
36.50	09/07/90			(108)
35.75	10/12/90			(158)
34.63	11/21/90		22.50	(136)
35.13	01/01/91			(183)
38.88	03/18/91		22.50	(86)
40.13	04/30/91			(58)
41.50	06/18/91		22.50	(74)
41.25	08/13/91			(108)
40.38	09/05/91			(208)
37.25	11/21/91		24.50	(284)
41.13	01/31/92	. 16			55
42.13	02/27/92		24.50	(184)
40.25	05/12/92			$($	71)
42.50	08/26/92	. 34	27.00		206
45.75	12/16/92	. 05	27.00		194
53.38	03/17/93		27.00		507
				(\$	312)

LOEWS - MOVING AVERAGE

SELL $\$$	SELL DATE
$\$ 74.75$	$11 / 11 / 88$
115.00	$12 / 20 / 89$
118.25	$01 / 09 / 90$
106.75	$05 / 07 / 90$
110.00	$06 / 28 / 90$
88.50	$01 / 09 / 91$
101.75	$04 / 10 / 91$
104.00	$05 / 07 / 91$
100.13	$06 / 19 / 91$
100.25	$08 / 02 / 91$
104.00	$10 / 09 / 91$
104.13	$12 / 13 / 91$
106.75	$01 / 30 / 92$
106.88	$02 / 18 / 92$
106.63	$04 / 07 / 92$
109.00	$06 / 26 / 92$
115.25	$08 / 28 / 92$
113.13	$10 / 16 / 92$
114.00	$01 / 07 / 93$

INC MM DIVID STK INC

	\$25.00	(\$ 458
\$11.86	100.00	3,854
		858

.14	25.00	
		$\binom{67}{183}$

.19		42
.83	25.00	542

542
208)
121)

30
283)
221)
295)
183) 17 80 $\begin{array}{ll}.11 & 25.00 \\ .70 & 25.00\end{array}$
\$ 523

LOEWS - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 79.0010 / 03 / 88$
$76.00 \quad 12 / 02 / 88$ 121.75 09/26/89 $124.7501 / 02 / 90$ 113.00 05/15/90 93.75 09/04/90 96.75 01/22/91 101.75 04/10/91 105.75 11/04/91 109.00 12/30/91 107.25 02/07/92 114.00 07/06/92 115.00 09/21/92 115.50 11/05/92

SELL \$ SELL DATE $\$ 79.00 \quad 10 / 17 / 88$
$78.50 \quad 02 / 10 / 89$ $121.75 \quad 10 / 17 / 89$ $108.25 \quad 04 / 24 / 90$ 118.00 06/04/90
93.25 12/07/90
$102.50 \quad 02 / 21 / 91$
105.88 10/08/91 103.88 11/21/91 $109.50 \quad 01 / 20 / 92$

INC MM	DIVID	$\begin{gathered} \text { STK } \\ (\$ \end{gathered}$	$\begin{aligned} & \mathrm{K} \text { INC } \\ &58) \end{aligned}$
\$13.62	\$25.00		231
		(58)
	25.00	(1	1,683)
10.92			453
	25.00	$($	83)
6.49	25.00		548
2.58	50.00		408
	25.00	$($	220)
. 20		$($	8)
1.94	25.00		444
. 66		$($	7)
1.72			219
	25.00	(1	1,120)

89
LOEWS - MACD

BUY \$	BUY DATE	SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$ 79.00	10/03/88	\$ 74.75	11/11/88		\$25.00	(\$ 458)
75.50	12/08/88	114.50	09/15/89	\$9.36	75.00	3,926
122.00	09/26/89	115.00	12/20/89		25.00	(733)
124.50	01/04/90	107.25	05/04/90		50.00	(1,733)
113.00	05/15/90	110.75	06/26/90			(283)
84.50	11/08/90	88.50	01/09/91	1.15		343
96.75	01/22/91	103.75	03/28/91	3.36	25.00	670
108.00	04/18/91	102.00	05/07/91		25.00	633)
102.50	05/31/91	101.63	06/14/91			145)
102.38	07/15/91	100.75	07/26/91			221)
102.13	08/08/91	104.13	10/11/91	1.15	25.00	168
106.38	11/05/91	105.25	11/22/91			171)
106.50	11/29/91	104.00	12/13/91			308)
107.75	12/27/91	106.75	01/30/92			158)
107.88	03/04/92	107.13	03/17/92			133)
111.75	04/16/92	109.25	06/25/92		25.00	283)
115.25	07/07/92	115.25	08/28/92		25.00	(33)
120.25	09/25/92	115.00	10/19/92			583)
117.38	11/09/92	114.00	01/07/93			$396)$
105.75	03/12/93	104.63	03/17/93			(170)
						(\$1,334)

LOEWS
 BUY AND HOLD

BEGIN PRICE = $\$ 79.00$
END PRICE = \$104.63
100 SHARES
TRAN COST = \$ 58
TOTAL DIVID = \$475

LOEWS
INVEST \$ IN MM
INVEST = \$7,900
AVG PRIME = .088
MONTHS HELD = 54

PHILLIP MORRIS - MOVING AVERAGE

PHILLIP MORRIS - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 24.0011 / 23 / 88$ 41.13 09/29/89 41.88 01/04/90 $47.2508 / 15 / 90$ 52.50 01/18/91 65.25 07/03/91 70.50 11/13/91 78.00 02/06/92 77.25 10/29/92

SELL \$ SELL DATE INC MM DIVID STK INC $\$ 24.25$ 12/13/88 $\$ 1.73 \quad \$ 29.80$ (\$ 1) $44.38 \quad 10 / 20 / 89 \quad 5.85 \quad 273$
$\begin{array}{lllll}42.13 & 04 / 25 / 90 & .67 & 36.50 & 4\end{array}$
$\begin{array}{lllll}50.88 & 12 / 28 / 90 & 1.74 & 45.50 & 352\end{array}$
$67.00 \quad 03 / 08 / 91 \quad 40.37 \quad 45.50 \quad 1,478$
$73.50 \quad 08 / 27 / 91 \quad 15.25 \quad 782$
$\begin{array}{lllll}77.25 & 01 / 20 / 92 & 2.59 & 52.50 & 672\end{array}$
77.75 07/23/92 $105.00 \quad 22$
$64.2503 / 17 / 93 \quad 130.00(1,228)$

PHILLIP MORRIS - MACD

SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$ 23.75	10/28/88			(\$ 108)
39.50	09/20/89	\$3.00	125.80	1,633
40.88	11/07/89			83)
40.13	12/20/89		36.50	284)
39.75	01/10/90			421)
44.00	08/06/90	5.67		558
48.50	10/18/90		73.00	292
46.80	01/09/91			171)
66.50	05/14/91	4.37	45.50	1,392
66.25	06/06/91		45.50	333)
71.25	10/07/91	1.08		558
68.75	10/23/91		52.50	546)
74.38	02/11/92	1.31		285
74.38	03/05/92			295)
75.75	04/09/92			146)
75.75	04/24/92			371)
76.00	05/22/92			(283)
82.75	10/08/92	4.56	65.00	512
76.25	12/16/92		65.00	318)
64.25	03/17/93		65.00	(1,118)
				\$ 753

PHILLIP MORRIS BUY AND HOLD

```
BEGIN PRICE = $ 24.25
END PRICE = $ 64.25
100 SHARES
TRAN COST = $ 58
TOTAL DIVID = $822.25
```

TOTAL DIVID = \$822.25
\qquad

PHILLIP MORRIS INVEST \$ IN MM

INVEST - \$2,425
AVG PRIME $=.088$
MONTHS HELD $=54$

PHILLIP'S PETROLEUM - MOVING AVERAGE

```
    BUY $ BUY DATE
$ 18.25 10/03/88
20.13 11/25/88
23.13 07/10/89
23.13 08/08/89
23.50 11/30/89
25.63 02/01/90
25.75 03/27/90
25.35 05/02/90
26.00 07/02/90
28.75 09/05/90
26.63 11/05/90
26.50 11/09/90
26.13 12/19/90
26.25 01/25/91
28.25 04/11/91
26.88 06/05/91
26.63 07/17/91
26.00 08/27/91
24.00 12/31/91
23.50 03/12/92
23.88 04/03/92
26.63 07/08/92
24.38 12/11/92
```

SELL \$ SELL DATE
MM INC DIVID STK INC
\$ 19.00 11/08/88
\$. 29 \$26.00
22.25 07/05/89 . $20 \quad 51.00 \quad 205$
22.38 08/02/89
23.25 10/13/89
$\begin{array}{ll}.14 & \left(\begin{array}{rr}133) \\ .15 & (\end{array}\right) \\ & \left(\begin{array}{ll}20)\end{array}\right.\end{array}$
23.88 01/15/90
$\begin{array}{rrr}.15 & 28.00\left(\begin{array}{rr}(20) \\ (& 118) \\ 158)\end{array}\right.\end{array}$
$24.75 \quad 03 / 22 / 90$
$24.75 \quad 04 / 19 / 90$
$\left.\left.\begin{array}{lllll}25.63 & 06 / 18 / 90 & .09 & 28.00 & (\end{array}\right) 2\right)$
24.88 01/04/91
$\begin{array}{cc}.02 & 28.00 \\ & \binom{58}{145}\end{array}$
27.38 05/03/91
26.25 06/18/91
$25.38 \quad 08 / 13 / 91$
$26.00 \quad 11 / 06 / 91$
$22.75 \quad 02 / 05 / 92$
$22.50 \quad 04 / 02 / 92$
$\begin{array}{lllll}25.00 & 06 / 29 / 92 & .22 & 28.00 & 82\end{array}$
$\begin{array}{llllr}27.00 & 10 / 06 / 92 & .58 & 28.00 & 8 \\ 24.88 & 03 / 17 / 93 & & 28.00 & 20\end{array}$
24.88 03/17/93

	$($	$145)$
28.00	$($	$121)$
28.00	$($	$155)$
28.00	$($	$155)$
	$($	$158)$
28.00	82	
28.00	8	
28.00	20	

$\overline{(\$ 1,474)}$

PHILLIP'S PETROLEUM - WILDER'S RELATIVE STRENGTH

BUY \$ BUY DATE $\$ 19.50$ 11/23/88 23.13 05/22/89 25.38 05/03/90 25.50 10/22/90 27.50 05/31/91 22.25 12/17/91 $25.6310 / 26 / 92$

SELL \$ SELL DATE
$\$ 20.50$ 01/30/89
$27.50 \quad 09 / 07 / 89$
26.38 05/30/90
$26.00 \quad 02 / 22 / 91$
25.63 09/12/91
$27.50 \quad 07 / 29 / 92$
26.50 02/17/93

INC MM	DIVID	STK	INC
$\$ 2.66$		$\$$	45
24.86	$\$ 28.00$		432
3.46	28.00		73
1.16	56.00		49
	28.00	$($	$217)$
11.09	56.00		534
.56	56.00		86

PHILLIP'S PETROLEUM - MACD

BUY \$ BUY DATE $\$ 18.2510 / 03 / 88$ 19.75 11/28/88 20.63 01/06/89 22.88 05/23/89 23.63 07/12/89 23.88 08/11/89 23.88 12/01/89 25.63 02/01/90 26.38 04/02/90 26.13 05/08/90 26.00 07/05/90 28.88 09/07/90 29.25 09/17/90 26.00 11/06/90 26.25 12/24/90 26.25 01/25/91 28.88 04/17/91 26.63 06/04/91 26.63 07/18/91 26.50 08/29/91 25.88 09/26/91 27.13 10/14/91 $23.50 \quad 12 / 30 / 91$ 24.38 01/15/92 $23.75 \quad 03 / 13 / 92$ 24.75 04/06/92 26.50 07/09/92 $27.50 \quad 09 / 30 / 92$ 24.38 12/11/92

SELL \$ SELL DATE $\$ 19.0011 / 08 / 88$ $19.38 \quad 12 / 27 / 88$ 22.63 05/11/89 . $53 \quad 51.20$ 22.88 06/12/89 22.50 08/01/89 $25.00 \quad 10 / 16 / 89$ 23.88 01/15/90 $25.38 \quad 03 / 20 / 90$ $24.75 \quad 04 / 19 / 90$ 25.63 06/18/90 $27.88 \quad 08 / 28 / 90$ 28.25 09/12/90 26.00 09/27/90 $25.38 \quad 12 / 10 / 90$ 24.88 01/04/91 $27.50 \quad 04 / 08 / 91 \quad .24 \quad 28.00$ 27.25 05/02/91 26.25 06/12/91
$25.38 \quad 08 / 12 / 91$
25.63 09/16/91
25.88 10/08/91
25.63 11/07/91
$22.75 \quad 01 / 10 / 92$
$22.75 \quad 02 / 05 / 92$
$22.50 \quad 04 / 02 / 92$
$25.00 \quad 06 / 29 / 92$
27.13 09/21/92
$27.38 \quad 10 / 05 / 92$
$24.88 \quad 03 / 17 / 93$

INC MM DIVID STK INC | $\$$ | .34 | $\$ 25.60$ | $\$$ | 43 |
| :--- | :--- | :--- | :--- | :--- |
| | | | | | 194 58) 1.2155 55 58) 55) 221) 108) 158 121) 383) 92) 195) 95 221)

96) 155) 145) 58)
1)
2) 193) 183) 5)

$.05 \quad 28.00$
$.12 \quad 28.00$
33
70)
$28.00 \frac{20}{(\$ 2,398)}$

PHILLIP'S PETROLEUM BUY AND HOLD

```
BEGIN PRICE = $ 18.25
END PRICE = $ 24.88
100 SHARES
TRAN COST = $ 58
TOTAL DIVID = $ 496.80
```

PHILLIP'S PETROLEUM
INVEST \$ IN MM
INVEST = \$1,825
AVG PRIME $=.088$
MONTHS HELD $=54$
\$ 882

SERVICE MASTER - MOVING AVERAGE

BUY \$ BUY DATE \$ 16.13 10/03/88 16.50 10/10/88 15.63 01/10/89 16.13 02/16/89 15.13 04/19/89 15.13 05/01/89 15.50 08/09/89 14.88 11/24/89 14.75 01/05/90 14.50 02/09/90 13.63 05/15/90 14.63 09/13/90 14.25 11/13/90 19.75 07/05/91 $24.00 \quad 05 / 05 / 92$ 25.13 06/29/92 27.25 10/22/92 27.88 01/08/93 27.88 03/04/93

SELL \$	SELL DATE	INC MM	DIVID	STK	INC
\$ 16.25	10/07/88	\$. 01		(\$	46)
15.75	10/17/88			(133)
15.25	02/14/89			(96)
15.25	03/03/89			(146)
14.63	04/26/89			(108)
15.38	07/27/89	. 07	\$29.00	$($	4)
15.25	08/28/89			(83)
14.25	12/19/89			(121)
14.13	01/19/90		30.00	(90)
13.75	03/23/90			(133)
14.63	08/17/90	. 62	30.00		73
14.63	10/12/90		30.00	(28)
18.63	06/12/91	2.31	96.00		478
25.13	03/04/92	7.88	80.00		568
24.00	06/24/92			$($	58)
27.38	09/21/92	1.62	32.00		201
27.38	12/22/92	. 05		$($	45)
27.25	02/16/93		33.00	(88)
28.87	03/17/93				41

SELL \$ SELL DATE INC MM DIVID STK INC \$ 16.25 10/07/88 $\$.01$ (\$ 46) 15.75 10/17/88 $15.25 \quad 02 / 14 / 89$ 15.25 03/03/89 $14.6304 / 26 / 89$ 15.38 07/27/89 15.25 08/28/89 $14.25 \quad 12 / 19 / 89$
14.13 01/19/90
13.75 03/23/90
14.63 08/17/90
18.63 06/12/91
25.13 03/04/92
24.00 06/24/92

27
27.25 02/16/93
28.87 03/17/93

SERVICE MASTER - WILDER'S RELATIVE STRENGTH

BUY	$\$$	BUY	DATE
15.	01	05	89
14.63	01	04	90
14.00	09	07	90
18.13	06	26	91
23.38	03	27	92
24.63	06	10	92
27.00	10	20	92
27.50	01	06	93

SELL $\$$	SELL		
$\$ 15.50$	06	14	89
14.75	06	12	90
15.25	12	20	90
21.25	09	30	91
24.88	05	27	92
26.75	07	31	92
28.38	11	11	92
28.88	03	17	93

INC MM	DIVID	STK	INC
$\$$.58	$\$ 58.60$	$\$$
.25	60.60		13
5.61	30.30		103
13.33	96.00		363
.47	32.00		124
4.07	32.00		190
1.82		82	
	33.00		113
			$\$ 1,003$

SERVICE MASTER - MACD

```
    BUY $ BUY DATE
$ 16.13 10/03/88
    16.13 10/12/88
    15.75 01/11/89
    16.00 02/17/89
    16.00 04/19/89
    15.00 05/02/89
    15.63 07/20/89
    15.63 08/17/89
    14.88 11/24/89
    14.75 01/05/90
    14.50 02/09/90
    13.88 05/16/90
        9.88 09/14/90
        9.75 10/05/90
        9.63 11/14/90
    10.50 01/28/91
    13.25 07/05/91
    15.50 04/28/92
    26.00 06/30/92
    27.25 10/22/92
    27.88 01/08/93
    28.00 03/05/93
```

$\left.\begin{array}{rllll}\text { SELL } \$ & \text { SELL DATE } & \text { INC MM } & \text { DIVID } & \begin{array}{c}\text { STK } \\ \text { (}\end{array} \\ \text { INC }\end{array}\right)$ 58)
\$ 746

SERVICE MASTER
BUY AND HOLD

INC MM = Income on stock gain invested at average prime rate

$$
\begin{aligned}
& \text { Stock * } \frac{.088}{365} \text { * \# days invested } \\
& \text { Gain at avg prime rate }
\end{aligned}
$$

\# DAYS INVESTED AT AVG PRIME = Buy Date - Last Sell date - 1
STOCK INCOME = Gain or Loss, including dividends, less transaction costs, plus income (using average prime rate) on gain figured for time period not in market.
(Sell\$ - Buy\$)*100 + Inc MM + Dividends - Tran Cost
BUY AND HOLD INCOME = Income for full time period, including dividends, less transaction costs.
(Price Mar. 17, 1993 - Price Oct. 3, 1988) * 100 Transaction Cost + Dividends

INCOME IF INVESTED AT AVG PRIME FOR FULL TIME PERIOD = Income if invested amount required to buy 100 shares of stock on October 3, 1988. Used average prime rate, compounded monthly.
(Beginning Price * 100) * (1.00733^54)

APPENDIX B
RESULTS BY INDICATOR

Avon	$\$ 3,928$	$\$ 3,156$	$\$ 2,410$	$\$ 4,791$	$\$ 1,179$
Boeing	$(1,270)$	24	$(1,379)$	1,003	1,354
Bristol-Myers	608	557	258	2,179	2,127
Colgate	2,750	2,179	1,826	4,766	1,076
Edison Brothers	4,547	$(1,391)$	1,239	3,276	707
Hershey	(479)	935	312	3,204	1,209
Loews	523	(934)	$(1,134)$	2,980	3,819
Phillip Morris	2,778	2,354	753	4,764	1,172
Phil. Petroleum	$(1,474)$	1,003	$(2,398)$	1,102	882
Service Master	182	1,004	746	1,807	780

$$
760-538
$$

BRISTOL MYERS - MACD

BUY \$ BUY DATE $\$ 44.0010 / 03 / 88$ 42.88 11/25/88 45.63 01/27/89 46.25 03/14/89 48.63 06/29/89 $49.3808 / 24 / 89$ $53.00 \quad 02 / 20 / 90$ $53.00 \quad 03 / 20 / 90$ $56.13 \quad 04 / 30 / 90$ 61.00 09/05/90 $67.2501 / 21 / 91$ 79.00 05/06/91 80.00 07/03/91 84.63 10/30/91 81.63 12/23/91 80.13 03/03/92 68.50 09/09/92 $66.0010 / 20 / 92$

SELL \$	SELL DATE	INC MM	DIVID	STK INC
\$ 42.63	11/09/88			(\$ 195)
44.88	01/11/89	\$. 72	\$50.00	193
45.00	03/02/89			121)
47.88	06/15/89	. 51	50.00	156
48.25	08/02/89			$96)$
54.88	01/16/90	4.49	103.00	599
52.38	03/14/90			120)
52.63	04/24/90		53.00	42)
58.50	08/06/90	1.65	53.00	234
62.50	01/08/91	43	113.00	205
75.50	04/25/91	1.98	60.00	829
79.00	06/11/91			58)
82.75	09/26/91	2.18		219
81.13	11/19/91			408)
82.63	01/24/92	. 91	69.00	112
67.25	08/25/92		138.00	1,208)
67.00	09/17/92			(208)
67.50	12/31/92	2.70	72.00	167

\$ 258

BRISTOL MYERS

BUY AND HOLD
BEGIN PRICE = \$44
END PRICE = \$56.37
100 SHARES
TRAN COST = \$58
TOTAL DIVID = $\$ 1,000$

BRISTOL MYERS
INVEST \$ IN MM
INVEST = \$4,400
AVG PRIME $=.088$
MONTHS HELD $=54$

[^0]: \$1,179

